The purpose of the Administrative Core is to provide support for the integrated Program on Lung Cancer Targeted Therapies, whose ultimate goal is to translate genomic events into the therapy of patients with nonsmall cell lung cancer (NSCLC) by discovery, testing, and validating kinase inhibitors as targeted therapies for genomically selected NSCLC . Specifically, the Core Director and Co-Director will provide guidance and oversight to the Projects and shared research Cores and will lead the evaluation of research progress including consultation with an Internal Advisory Committee and an External Advisory Board. The Administrative Core of this Program Project application is to coordinate these interrelated complementary research projects to maximize their scientific synergy and to share the findings with the scientific community. The Core Directors will co-ordinate staff assistance to projects including administrative support to facilitate scientific progress including meeting arrangements, editorial services for manuscript preparation, and web development services for internal and external communications.
The specific aims of the Administrative Core are summarized below.
Specific Aim 1 : Monitor projects and shared resource cores and to evaluate overall research progress.
Specific Aim 2 : Foster collaboration and communication among the projects and shared resource cores.
Specific Aim 3; Provide fiscal oversight and support for the program.
Specific Aim 4 : Promote the clinical translation of diagnostic and therapeutic discoveries from the program.

Public Health Relevance

To accomplish a complex, multi-investigator research effort such as the Program in Lung Cancer Targeted Therapies, which could achieve a real impact on lung cancer treatment, requires significant co-ordination among Projects, Cores, and investigators within the Program. The Administrative Core will accomplish this necessary co-ordination and oversight.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Research Program Projects (P01)
Project #
1P01CA154303-01A1
Application #
8237139
Study Section
Special Emphasis Panel (ZCA1-GRB-P (O1))
Project Start
2012-05-11
Project End
2017-04-30
Budget Start
2012-05-11
Budget End
2013-04-30
Support Year
1
Fiscal Year
2012
Total Cost
$169,754
Indirect Cost
$71,199
Name
Dana-Farber Cancer Institute
Department
Type
DUNS #
076580745
City
Boston
State
MA
Country
United States
Zip Code
02215
Tan, Li; Gurbani, Deepak; Weisberg, Ellen L et al. (2017) Structure-guided development of covalent TAK1 inhibitors. Bioorg Med Chem 25:838-846
Tan, Li; Gurbani, Deepak; Weisberg, Ellen L et al. (2017) Studies of TAK1-centered polypharmacology with novel covalent TAK1 inhibitors. Bioorg Med Chem 25:1320-1328
Deng, Jiehui; Wang, Eric S; Jenkins, Russell W et al. (2017) CDK4/6 Inhibition Augments Antitumor Immunity by Enhancing T-cell Activation. Cancer Discov :
Krall, Elsa B; Wang, Belinda; Munoz, Diana M et al. (2017) KEAP1 loss modulates sensitivity to kinase targeted therapy in lung cancer. Elife 6:
Adeegbe, Dennis O; Liu, Yan; Lizotte, Patrick H et al. (2017) Synergistic Immunostimulatory Effects and Therapeutic Benefit of Combined Histone Deacetylase and Bromodomain Inhibition in Non-Small Cell Lung Cancer. Cancer Discov 7:852-867
Majkowska, Iwona; Shitomi, Yasuyuki; Ito, Noriko et al. (2017) Discoidin domain receptor 2 mediates collagen-induced activation of membrane-type 1 matrix metalloproteinase in human fibroblasts. J Biol Chem 292:6633-6643
Meyers, Robin M; Bryan, Jordan G; McFarland, James M et al. (2017) Computational correction of copy number effect improves specificity of CRISPR-Cas9 essentiality screens in cancer cells. Nat Genet 49:1779-1784
Wang, Belinda; Krall, Elsa Beyer; Aguirre, Andrew James et al. (2017) ATXN1L, CIC, and ETS Transcription Factors Modulate Sensitivity to MAPK Pathway Inhibition. Cell Rep 18:1543-1557
Zhang, Haikuo; Qi, Jun; Reyes, Jaime M et al. (2016) Oncogenic Deregulation of EZH2 as an Opportunity for Targeted Therapy in Lung Cancer. Cancer Discov 6:1006-21
Yang, Shenghong; Imamura, Yu; Jenkins, Russell W et al. (2016) Autophagy Inhibition Dysregulates TBK1 Signaling and Promotes Pancreatic Inflammation. Cancer Immunol Res 4:520-30

Showing the most recent 10 out of 75 publications