Adoptive T cell therapy (ACT) can lead to impressive results but the frequency of success is low. Generally success correlates with persistence ofthe adoptively transferred T cells. Our results indicate that repetitive TCR stimulation, which occurs during ACT leads to activation induced cell death (AICD) of CDS effector cells. Thus AICD may contribute to poor persistence of adoptively transferred T cells. Recently, it has become possible to genetically modify autologous T cells by transduction with a tumor-specific TCR such as the high affinity TIL13S3i TCR central to this application. While little is known about the biology of these genetically modified cells, we show that they also undergo AICD, Thus a feasible translational approach to enhance persistence of genetically modified T cells will be to insert an additional protective gene into the vector expressing the TlL1383i TCR. Therefore, it will be necessary to understand the signal transduction pathways leading to AICD. Our preliminary data identify JNK, p53, and AIF as mediators of AICD in T cells expressing a native TCR. However, similarities and differences between T cells expressing a native vs. a transduced TCR as well as downstream mediators and remain to be elucidated. We will therefore compare AICD and anti-tumor efficacy between T cells natively expressing the TlL1383i (derived from the h3T transgenic model) and T cells that have been transduced with the TlL31S3i TCR. We observed that ROS generation is a common phenomenon associated with AICD and that pharmacological inhibition with ROS scavenger results in protection from cell death without interfering with T cell activation, which places redox regulation at a central point for therapeutic intervention. It is our hypothesis is that genetically enhancing the antioxidant capacity of TIL1383i TCR transduced T cells will lead to specific and sustained protection from AICD thereby increasing persistence, memory pool development and anti-tumor efficacy following adoptive T cell transfer Our aims are:
Specific Aim 1. To dissect the mechanism of AICD in TCR transduced T cells after repetitive TCR stimulation.
Specific Aim 2. To determine how increasing the antioxidant capacity of TCR transduced T cells impacts, survival, function, and memory development in vitro.
Specific Aim 3. To evaluate how increased antioxidant capacity of adoptively transferred TCR transduced T cells affects their persistence and memory development as well as tumor regression in vivo. Our approach could directly impact ongoing clinical trials, in which genetically modified T cells are used for immunotherapy of melanoma.

Public Health Relevance

Immune cells can be taken from blood, activated outside the patient's body, and re-administered to fight cancer. This type of immunotherapy can lead to impressive results if the administered cells stay alive but in most patients the cells disappear. We are proposing to make the immune T cells more robust and anticipate this will prevent them from dying and that therefore a higher number will be available to fight the cancer.

National Institute of Health (NIH)
National Cancer Institute (NCI)
Research Program Projects (P01)
Project #
Application #
Study Section
Special Emphasis Panel (ZCA1-RPRB-J)
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Loyola University Chicago
United States
Zip Code
Wang, Yuan; Singh, Nishant K; Spear, Timothy T et al. (2017) How an alloreactive T-cell receptor achieves peptide and MHC specificity. Proc Natl Acad Sci U S A 114:E4792-E4801
Spear, Timothy T; Wang, Yuan; Foley, Kendra C et al. (2017) Critical biological parameters modulate affinity as a determinant of function in T-cell receptor gene-modified T-cells. Cancer Immunol Immunother 66:1411-1424
Foley, Kendra C; Spear, Timothy T; Murray, David C et al. (2017) HCV T Cell Receptor Chain Modifications to Enhance Expression, Pairing, and Antigen Recognition in T Cells for Adoptive Transfer. Mol Ther Oncolytics 5:105-115
Spear, Timothy T; Callender, Glenda G; Roszkowski, Jeffrey J et al. (2016) TCR gene-modified T cells can efficiently treat established hepatitis C-associated hepatocellular carcinoma tumors. Cancer Immunol Immunother 65:293-304
Banerjee, Anirban; Thyagarajan, Krishnamurthy; Chatterjee, Shilpak et al. (2016) Lack of p53 Augments Antitumor Functions in Cytolytic T Cells. Cancer Res 76:5229-5240
Blevins, Sydney J; Pierce, Brian G; Singh, Nishant K et al. (2016) How structural adaptability exists alongside HLA-A2 bias in the human ?? TCR repertoire. Proc Natl Acad Sci U S A 113:E1276-85
Klarquist, Jared; Eby, Jonathan M; Henning, Steven W et al. (2016) Functional cloning of a gp100-reactive T-cell receptor from vitiligo patient skin. Pigment Cell Melanoma Res 29:379-84
Hellman, Lance M; Yin, Liusong; Wang, Yuan et al. (2016) Differential scanning fluorimetry based assessments of the thermal and kinetic stability of peptide-MHC complexes. J Immunol Methods 432:95-101
Spear, Timothy T; Nagato, Kaoru; Nishimura, Michael I (2016) Strategies to genetically engineer T cells for cancer immunotherapy. Cancer Immunol Immunother 65:631-49
Sandri, Sara; Bobisse, Sara; Moxley, Kelly et al. (2016) Feasibility of Telomerase-Specific Adoptive T-cell Therapy for B-cell Chronic Lymphocytic Leukemia and Solid Malignancies. Cancer Res 76:2540-51

Showing the most recent 10 out of 33 publications