Our myeloma research group, which has developed number of new targets and novel therapies (DFCI), will partner with the world leaders in cooperative clinical and transplantation trials in MM (IFM) to pursue collaborative translational investigation. We will couple combination novel therapies with high dose therapy and transplantation and then delineate genomic and molecular correlates of clinical and biological outcomes. Project 1 will focus on defining the durability of responses to novel combination therapy on the one hand, and the additional value of high dose therapy on the other, by enrolling 1000 newly diagnosed patients between IFM and DFCI. This trial will provide 1000 samples from newly diagnosed and uniformly treated patients to comprehensively characterize the MM genome and epigenome, to define molecular events driving development and progression of MM (Project 2), as well as to identify novel therapeutic targets (Project 3), biomarkers, and preventative strategies (Project 4). In these collaborative studies the Sanger Institute in UK, with whole genome sequencing capabilities, along with research teams from DFCI and IFM, will perform molecular genetic analysis of patient samples and delineate patient subgroups most likely to respond and achieve prolonged survival (Projects 2 and 4). The clinically relevant novel targets identified using these high throughput genomic technologies will be validated and novel targeted therapies developed in Project 3. Project 4 will further analyze evolution of genomic changes at relapse and their clinical significance, as well as devise strategies to prevent genomic instability. These 4 projects will be supported by Administrative and Communication Core (A), Clinical and Tissue Core (B);Genomics Core (C);Genomic Sequencing Core (0), and Biostatistical and Bioinformatics Core (E). This unique collaborative effort will define a new treatment paradigm for this presently incurable disease.

Public Health Relevance

This program will help define the role of high dose therapy and transplantation in the era of novel therapies Moreover, the oncogenomic studies will both identify genomic correlates of disease behavior and identify targets for novel therapeutics to develop next generation of therapies in myeloma.

National Institute of Health (NIH)
National Cancer Institute (NCI)
Research Program Projects (P01)
Project #
Application #
Study Section
Special Emphasis Panel (ZCA1-RPRB-J (O1))
Program Officer
Merritt, William D
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Dana-Farber Cancer Institute
United States
Zip Code
Bae, J; Prabhala, R; Voskertchian, A et al. (2015) A multiepitope of XBP1, CD138 and CS1 peptides induces myeloma-specific cytotoxic T lymphocytes in T cells of smoldering myeloma patients. Leukemia 29:218-29
Hu, Y; Song, W; Cirstea, D et al. (2015) CSNK1?1 mediates malignant plasma cell survival. Leukemia 29:474-82
Moreau, Philippe; Cavo, Michele; Sonneveld, Pieter et al. (2014) Combination of international scoring system 3, high lactate dehydrogenase, and t(4;14) and/or del(17p) identifies patients with multiple myeloma (MM) treated with front-line autologous stem-cell transplantation at high risk of early MM progression-related J Clin Oncol 32:2173-80
Lu, R; Pal, J; Buon, L et al. (2014) Targeting homologous recombination and telomerase in Barrett's adenocarcinoma: impact on telomere maintenance, genomic instability and tumor growth. Oncogene 33:1495-505
Anderson, K K; Flora, N; Archie, S et al. (2014) A meta-analysis of ethnic differences in pathways to care at the first episode of psychosis. Acta Psychiatr Scand 130:257-68
Chretien, Marie-Lorraine; Hebraud, Benjamin; Cances-Lauwers, Valérie et al. (2014) Age is a prognostic factor even among patients with multiple myeloma younger than 66 years treated with high-dose melphalan: the IFM experience on 2316 patients. Haematologica 99:1236-8
Samur, Mehmet Kemal (2014) RTCGAToolbox: a new tool for exporting TCGA Firehose data. PLoS One 9:e106397
Cottini, Francesca; Hideshima, Teru; Xu, Chunxiao et al. (2014) Rescue of Hippo coactivator YAP1 triggers DNA damage-induced apoptosis in hematological cancers. Nat Med 20:599-606
Hebraud, B; Leleu, X; Lauwers-Cances, V et al. (2014) Deletion of the 1p32 region is a major independent prognostic factor in young patients with myeloma: the IFM experience on 1195 patients. Leukemia 28:675-9
Cooke, Susanna L; Shlien, Adam; Marshall, John et al. (2014) Processed pseudogenes acquired somatically during cancer development. Nat Commun 5:3644

Showing the most recent 10 out of 35 publications