Multiple Myeloma (MM) Is a complex disease driven by numerous genetic and epigenetic alterations. Our compretiensive oncogenomic analysis indicates the presence of many tightly recurrent and tightly focal amplifications/deletions in the MM genome. Indeed, integrated oncogenomic analyses of human MM have identified candidates resident within regions of amplification/deletions predicted to be involved in MM pathogenesis and progression. Using the clinical and genomic information from patient samples, our goals are to identify novel molecular lesions with clinical prognostic and therapeutic correlation. Our preliminary oncogenomic studies have confirmed our ability to perform large-scale high-throughput genomic profiling on myeloma cells from patient bone marrow (BM) samples. We hypothesize that the biological behavior and clinical outcome in MM is dependent on molecular determinants, which are also attractive therapeutic targets. In this Project we will: characterize the spectrum of genomic lesions associated with pathogenesis and progression of monoclonal gammopathy of undetermined significance (MGUS)/Smoldering MM (SMM) to active MM (Sp Aim 1);identify genomic alterations in 1,000 newly diagnosed uniformly treated patients correlating with clinical outcome (Sp Aim 2);and determine whether mechanisms modifying transcriptome are associated with clinical outcome (Sp Aim 3). This project will provide a better understanding of the impact of copy number and gene expression alterations and their functional consequences on MM initiation and progression, as well as identify novel targets for therapeutic intervention.

Public Health Relevance

This project will identify genomic markers of progression of MGUS/SMM to myeloma and highlight alteration in copy number and gene expression predictive of prognosis in uniformly treated patients. This will also identify novel targets for validation and therapeutic application.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Research Program Projects (P01)
Project #
5P01CA155258-04
Application #
8733612
Study Section
Special Emphasis Panel (ZCA1-RPRB-J)
Project Start
Project End
Budget Start
2014-09-01
Budget End
2015-08-31
Support Year
4
Fiscal Year
2014
Total Cost
$155,746
Indirect Cost
$40,148
Name
Dana-Farber Cancer Institute
Department
Type
DUNS #
076580745
City
Boston
State
MA
Country
United States
Zip Code
02215
Fulciniti, Mariateresa; Martinez-Lopez, Joaquin; Senapedis, William et al. (2017) Functional role and therapeutic targeting of p21-activated kinase 4 in multiple myeloma. Blood 129:2233-2245
Magrangeas, Florence; Kuiper, Rowan; Avet-Loiseau, Hervé et al. (2016) A Genome-Wide Association Study Identifies a Novel Locus for Bortezomib-Induced Peripheral Neuropathy in European Patients with Multiple Myeloma. Clin Cancer Res 22:4350-4355
Ohguchi, Hiroto; Hideshima, Teru; Bhasin, Manoj K et al. (2016) The KDM3A-KLF2-IRF4 axis maintains myeloma cell survival. Nat Commun 7:10258
Stroopinsky, Dina; Kufe, Donald; Avigan, David (2016) MUC1 in hematological malignancies. Leuk Lymphoma 57:2489-98
Richardson, Paul G; Hungria, Vânia T M; Yoon, Sung-Soo et al. (2016) Panobinostat plus bortezomib and dexamethasone in previously treated multiple myeloma: outcomes by prior treatment. Blood 127:713-21
Fulciniti, M; Amodio, N; Bandi, R L et al. (2016) miR-23b/SP1/c-myc forms a feed-forward loop supporting multiple myeloma cell growth. Blood Cancer J 6:e380
Szalat, Raphael; Avet-Loiseau, Herve; Munshi, Nikhil C (2016) Gene Expression Profiles in Myeloma: Ready for the Real World? Clin Cancer Res 22:5434-5442
Amodio, Nicola; Stamato, Maria Angelica; Gullà, Anna Maria et al. (2016) Therapeutic Targeting of miR-29b/HDAC4 Epigenetic Loop in Multiple Myeloma. Mol Cancer Ther 15:1364-75
Xu, Lian; Hunter, Zachary R; Tsakmaklis, Nicholas et al. (2016) Clonal architecture of CXCR4 WHIM-like mutations in Waldenström Macroglobulinaemia. Br J Haematol 172:735-44
Gullà, Annamaria; Di Martino, Maria Teresa; Gallo Cantafio, Maria Eugenia et al. (2016) A 13 mer LNA-i-miR-221 Inhibitor Restores Drug Sensitivity in Melphalan-Refractory Multiple Myeloma Cells. Clin Cancer Res 22:1222-33

Showing the most recent 10 out of 180 publications