Whole genome sequencing is a specialized function requiring expertise, special instruments and facilities along with informatics capabilities. This function cannot be performed in individual laboratories. Whole genome sequencing is also evolving rapidly and constantly improving the read capabilities, number of samples per run and informatics capabilities. There is only limited number of facilities available worldwide with such capabilities. Welcome Trust Sanger Institute (WTSI) is a leader in sequencing the human genome, contributing one third of all the sequences and has made numerous contributions to other large genomes, Idad efforts to sequence pathogens and disease vectors and mouse Rl strain genomes. WTSI is committed to continually appraising new sequencing technologies, using in-house testing wherever possible, and will use whatever future technology is most suitable and cost-effective for the applications demanded by the science pursued at the Institute. The purpose of Core D is to provide for comprehensive genomic sequence analyses by utilizing a state of the art 'next generation'sequencing platform for both the sequencing of all coding exons/miRNA genes and the identification and characterization of genome-wide rearrangements at base-pair resolution in samples detailed in Projects 1 and 2. To meet these goals, in Core D we will pursue the following specific aims: to generate comprehensive somatic mutation data for all coding exons and miRNA genes from selected samples from patients progressing from monoclonal gammopathy of underemined significance (MGUS) smoldering multiple myeloma (SMM) to active multiple myeloma (MM) or MM evolution from diagnosis to relapse (Specific Aim 1);and to generate a genome-wide rean^angement data at base-pair resolution from selected samples to explore genomic changes during MM evolution from diagnosis to relapse (Specific Aim 2). Further, the core will provide bioinformatics expertise in the management and analysis of data produced within the core to support the projects.

Public Health Relevance

The core will perform high output whole genome sequencing, uniformly analyze clinical sample both to investigate for genomic and transcriptomic changes in MGUS vs MM and correlate changes in MM with various clinical groups.

National Institute of Health (NIH)
National Cancer Institute (NCI)
Research Program Projects (P01)
Project #
Application #
Study Section
Special Emphasis Panel (ZCA1-RPRB-J)
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Dana-Farber Cancer Institute
United States
Zip Code
Bae, J; Prabhala, R; Voskertchian, A et al. (2015) A multiepitope of XBP1, CD138 and CS1 peptides induces myeloma-specific cytotoxic T lymphocytes in T cells of smoldering myeloma patients. Leukemia 29:218-29
Hu, Y; Song, W; Cirstea, D et al. (2015) CSNK1?1 mediates malignant plasma cell survival. Leukemia 29:474-82
Moreau, Philippe; Cavo, Michele; Sonneveld, Pieter et al. (2014) Combination of international scoring system 3, high lactate dehydrogenase, and t(4;14) and/or del(17p) identifies patients with multiple myeloma (MM) treated with front-line autologous stem-cell transplantation at high risk of early MM progression-related J Clin Oncol 32:2173-80
Lu, R; Pal, J; Buon, L et al. (2014) Targeting homologous recombination and telomerase in Barrett's adenocarcinoma: impact on telomere maintenance, genomic instability and tumor growth. Oncogene 33:1495-505
Anderson, K K; Flora, N; Archie, S et al. (2014) A meta-analysis of ethnic differences in pathways to care at the first episode of psychosis. Acta Psychiatr Scand 130:257-68
Chretien, Marie-Lorraine; Hebraud, Benjamin; Cances-Lauwers, Valérie et al. (2014) Age is a prognostic factor even among patients with multiple myeloma younger than 66 years treated with high-dose melphalan: the IFM experience on 2316 patients. Haematologica 99:1236-8
Samur, Mehmet Kemal (2014) RTCGAToolbox: a new tool for exporting TCGA Firehose data. PLoS One 9:e106397
Cottini, Francesca; Hideshima, Teru; Xu, Chunxiao et al. (2014) Rescue of Hippo coactivator YAP1 triggers DNA damage-induced apoptosis in hematological cancers. Nat Med 20:599-606
Hebraud, B; Leleu, X; Lauwers-Cances, V et al. (2014) Deletion of the 1p32 region is a major independent prognostic factor in young patients with myeloma: the IFM experience on 1195 patients. Leukemia 28:675-9
Cooke, Susanna L; Shlien, Adam; Marshall, John et al. (2014) Processed pseudogenes acquired somatically during cancer development. Nat Commun 5:3644

Showing the most recent 10 out of 35 publications