We propose to design and test systems for the ablation of pancreatic cancer and other retroperitoneal malignancies using magnetic resonance thermal imaging (MRTI) within a 3 Tesla magnetic resonance. We will design and test ultrasonic delivery systems using ultrasonic applicators directly inserted into tumors (""""""""interstitial"""""""" applicators), as well as an existing ultrasonic array system external to the body. Additionally, we will develop MRI-based 3-dimensional techniques for patient specific treatment planning, and robust MRTI techniques for monitoring retroperitoneal tumor ablation. In vivo studies using an animal model will allow determination of MRTI accurately to portray tissue ablation in real time, and avoid damage to normal structures adjacent to tumors. The in vivo studies of acute and longer-term changes to tissues during ablation will also investigate several types of MR imaging, including T2-weighted, diffusion weighted, contrast- enhanced and MR images encoding tissue stiffness, following ablative procedures. Histologic/MRI correlations will allow for determination of the ability of such images accurately to portray tissue changes resulting from the ablative procedures. The clinical importance of the project stems from the fact that the major cancer targeted, pancreatic cancer is currently the fourth leading cause of cancer death in the United States;it is nearly uniformly fatal, since early local extension with encasement of blood vessels makes surgery impossible in about 90% of cases, and other treatment modalities are of limited effectiveness. The controlled thermal techniques proposed should be capable of ablating cancers extending to blood vessels, which cannot be treated surgically. The technologies and techniques, to be developed should allow effective treatment of pancreatic cancer and other retroperitoneal malignancies with minimal damage to normal structures and minimal side effects of treatment.

Public Health Relevance

Pancreatic cancer is currently the fourth leading cause of cancer death in the United States, and treatment is generally of very limited effectiveness. We propose the development and extensive testing of systems for the thermal destruction of pancreatic and other retroperitoneal cancers using guidance available with MR imaging to visualize the heating process during treatment, and evaluate tissue damage following treatment. We will develop systems capable of effective minimally invasive treatment of such malignancies, while sparing normal tissues and improving patient outcomes.

National Institute of Health (NIH)
National Cancer Institute (NCI)
Research Program Projects (P01)
Project #
Application #
Study Section
Special Emphasis Panel (ZCA1-GRB-P)
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Stanford University
United States
Zip Code
Johnson, Ethan M; Vyas, Urvi; Ghanouni, Pejman et al. (2016) Improved cortical bone specificity in UTE MR Imaging. Magn Reson Med :
Zhu, Kangrong; Dougherty, Robert F; Wu, Hua et al. (2016) Hybrid-Space SENSE Reconstruction for Simultaneous Multi-Slice MRI. IEEE Trans Med Imaging 35:1824-36
Marx, Michael; Butts Pauly, Kim (2016) Improved MRI thermometry with multiple-echo spirals. Magn Reson Med 76:747-56
Vyas, Urvi; Ghanouni, Pejman; Halpern, Casey H et al. (2016) Predicting variation in subject thermal response during transcranial magnetic resonance guided focused ultrasound surgery: Comparison in seventeen subject datasets. Med Phys 43:5170
Adams, Matthew S; Salgaonkar, Vasant A; Plata-Camargo, Juan et al. (2016) Endoluminal ultrasound applicators for MR-guided thermal ablation of pancreatic tumors: Preliminary design and evaluation in a porcine pancreas model. Med Phys 43:4184
Gaur, Pooja; Partanen, Ari; Werner, Beat et al. (2016) Correcting heat-induced chemical shift distortions in proton resonance frequency-shift thermometry. Magn Reson Med 76:172-82
Avedian, Raffi S; Bitton, Rachelle; Gold, Garry et al. (2016) Is MR-guided High-intensity Focused Ultrasound a Feasible Treatment Modality for Desmoid Tumors? Clin Orthop Relat Res 474:697-704
Ghanouni, Pejman; Dobrotwir, Andrew; Bazzocchi, Alberto et al. (2016) Magnetic resonance-guided focused ultrasound treatment of extra-abdominal desmoid tumors: a retrospective multicenter study. Eur Radiol :
Bitton, Rachel R; Webb, Taylor D; Pauly, Kim Butts et al. (2016) Improving thermal dose accuracy in magnetic resonance-guided focused ultrasound surgery: Long-term thermometry using a prior baseline as a reference. J Magn Reson Imaging 43:181-9
Adams, Matthew S; Scott, Serena J; Salgaonkar, Vasant A et al. (2016) Thermal therapy of pancreatic tumours using endoluminal ultrasound: Parametric and patient-specific modelling. Int J Hyperthermia 32:97-111

Showing the most recent 10 out of 48 publications