The exciting potential for deep-seated brain tumors is the ability to treat them with focused ultrasound, without damage to the intervening tissues, and without the need to open the head. MRI can provide the necessary control for these procedures through outstanding soft tissue contrast for targeting, monitoring techniques with MR thermometry, and the means to assess tissue viability immediately after treatment.
The aims of this project are to improve these MR methods. Specifically, we aim to a) improve focal spot localization, b) improve temperature imaging including whole brain coverage and reduced sensitivity to artifacts, c) improved ablation in the presence of calcifications, and d) test the hypotheses that a series of ultrasound pulses do not damage brain tissue and that heat fixation occurs for temperatures greater than 60?C. In addition, we will investigate the appearance of thermal lesions on DWI, MT, T1, CE, and stiffness weighted images.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Research Program Projects (P01)
Project #
5P01CA159992-03
Application #
8568007
Study Section
Special Emphasis Panel (ZCA1-GRB-P)
Project Start
Project End
Budget Start
2013-09-01
Budget End
2014-08-31
Support Year
3
Fiscal Year
2013
Total Cost
$186,903
Indirect Cost
$61,497
Name
Stanford University
Department
Type
DUNS #
009214214
City
Stanford
State
CA
Country
United States
Zip Code
94305
Dixit, Neerav; Stang, Pascal P; Pauly, John M et al. (2018) Thermo-Acoustic Ultrasound for Detection of RF-Induced Device Lead Heating in MRI. IEEE Trans Med Imaging 37:536-546
Gibbons, Eric K; Le Roux, Patrick; Vasanawala, Shreyas S et al. (2018) Robust Self-Calibrating nCPMG Acquisition: Application to Body Diffusion-Weighted Imaging. IEEE Trans Med Imaging 37:200-209
Weber, Hans; Hargreaves, Brian A; Daniel, Bruce L (2018) Artifact-reduced imaging of biopsy needles with 2D multispectral imaging. Magn Reson Med 80:655-661
Webb, Taylor D; Leung, Steven A; Rosenberg, Jarrett et al. (2018) Measurements of the Relationship Between CT Hounsfield Units and Acoustic Velocity and How It Changes With Photon Energy and Reconstruction Method. IEEE Trans Ultrason Ferroelectr Freq Control 65:1111-1124
Weber, Hans; Ghanouni, Pejman; Pascal-Tenorio, Aurea et al. (2018) MRI monitoring of focused ultrasound sonications near metallic hardware. Magn Reson Med 80:259-271
Zheng, Yuan; Marx, Michael; Miller, G Wilson et al. (2018) High sensitivity MR acoustic radiation force imaging using transition band balanced steady-state free precession. Magn Reson Med 79:1532-1537
Han, Amy Kyungwon; Bae, Jung Hwa; Gregoriou, Katerina C et al. (2018) MR-Compatible Haptic Display of Membrane Puncture in Robot-Assisted Needle Procedures. IEEE Trans Haptics :
Gibbons, Eric K; Le Roux, Patrick; Pauly, John M et al. (2018) Slice profile effects on nCPMG SS-FSE. Magn Reson Med 79:430-438
Aggarwal, Kamal; Joshi, Kiran R; Rajavi, Yashar et al. (2017) A Millimeter-Wave Digital Link for Wireless MRI. IEEE Trans Med Imaging 36:574-583
Ghanouni, Pejman; Kishore, Sirish; Lungren, Matthew P et al. (2017) Treatment of Low-Flow Vascular Malformations of the Extremities Using MR-Guided High Intensity Focused Ultrasound: Preliminary Experience. J Vasc Interv Radiol 28:1739-1744

Showing the most recent 10 out of 64 publications