The mission of the engineering services core is to provide a common base of software and hardware systems and interfaces to support the five MRI guided cancer ablation program projects: 1) MR-guided HIFU of Soft Tissue Tumors, 2) Minimally Invasive MRI-Guided Management of Prostate Disease, 3) MR-Guided Precision Thermal Therapy of Retroperitoneal Tumors, 4) MRI Methods for Guiding Focused Ultrasound in the Brain, and 5) MR-Guided RF ablation. The software services will adapt the HeartVista real-time MRI package for interventional MRI applications and create tailored application specific interfaces, sequences, and control processes for each therapy. These services will provide in room projection display, needle placement and tracking software, real-time MRI temperature mapping and 3D visualization tools for iceball formation, high-intensity focused ultrasound (HIFU) targeting and RF ablation volumes. For each ablation modality (cryo-ablation, HIFU, RF), treatment planning utilities can be developed. The hardware services will provide customized active device visualization methods for MRI, to support MR-Guided RF ablation, needle tracking for cryo-ablation and

Public Health Relevance

All forms of ablation will benefit from a well-integrated hardware and software interface with an MRI scanner. The engineering core will develop methods and interfaces to allow a very user-friendly control of ablation by MRI. This should reduce the treatment time and improve the targeting to cancer tumors.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Research Program Projects (P01)
Project #
5P01CA159992-03
Application #
8568010
Study Section
Special Emphasis Panel (ZCA1-GRB-P)
Project Start
Project End
Budget Start
2013-09-01
Budget End
2014-08-31
Support Year
3
Fiscal Year
2013
Total Cost
$211,793
Indirect Cost
$69,686
Name
Stanford University
Department
Type
DUNS #
009214214
City
Stanford
State
CA
Country
United States
Zip Code
94305
Ellenor, Christopher W; Stang, Pascal P; Etezadi-Amoli, Maryam et al. (2015) Offline impedance measurements for detection and mitigation of dangerous implant interactions: an RF safety prescreen. Magn Reson Med 73:1328-39
Etezadi-Amoli, Maryam; Stang, Pascal; Kerr, Adam et al. (2015) Interventional device visualization with toroidal transceiver and optically coupled current sensor for radiofrequency safety monitoring. Magn Reson Med 73:1315-27
Scott, Serena J; Salgaonkar, Vasant; Prakash, Punit et al. (2014) Interstitial ultrasound ablation of vertebral and paraspinal tumours: parametric and patient-specific simulations. Int J Hyperthermia 30:228-44
Vyas, Urvi; Kaye, Elena; Pauly, Kim Butts (2014) Transcranial phase aberration correction using beam simulations and MR-ARFI. Med Phys 41:032901
Bitton, Rachel R; Pauly, Kim R Butts (2014) MR-acoustic radiation force imaging (MR-ARFI) and susceptibility weighted imaging (SWI) to visualize calcifications in ex vivo swine brain. J Magn Reson Imaging 39:1294-300
Rube, Martin A; Holbrook, Andrew B; Cox, Benjamin F et al. (2014) Wireless MR tracking of interventional devices using phase-field dithering and projection reconstruction. Magn Reson Imaging 32:693-701
Prakash, Punit; Salgaonkar, Vasant A; Diederich, Chris J (2013) Modelling of endoluminal and interstitial ultrasound hyperthermia and thermal ablation: applications for device design, feedback control and treatment planning. Int J Hyperthermia 29:296-307
Rieke, Viola; Instrella, Ron; Rosenberg, Jarrett et al. (2013) Comparison of temperature processing methods for monitoring focused ultrasound ablation in the brain. J Magn Reson Imaging 38:1462-71
Sommer, Graham; Pauly, Kim Butts; Holbrook, Andrew et al. (2013) Applicators for magnetic resonance-guided ultrasonic ablation of benign prostatic hyperplasia. Invest Radiol 48:387-94
Sommer, Graham; Bouley, Donna; Gill, Harcharan et al. (2013) Focal ablation of prostate cancer: four roles for magnetic resonance imaging guidance. Can J Urol 20:6672-81

Showing the most recent 10 out of 11 publications