Pancreatic ductal adenocarcinoma (PDAC) is one of the deadliest cancers. Genetic factors, such as activating mutations in the KRAS oncogene, play a key role in PDAC initiation. Epidemiologic and experimental data indicate that dietary factors, i.e., diet high in fats and calories (HFCD), accelerate tumor development caused by genetic susceptibility. However, the underlying mechanisms remain unclear. Autophagy {macroautophagy) is the principal cellular catabolic pathway in which organelles, e.g., mitochondria, and long-lived proteins are sequestered by autophagosomes and delivered to lysosomes for degradation. The efficiency of autophagic flux is determined by autophagosome formation and lysosomal proteolytic function. Beclin1 protein is critical to autophagosome formation in normal cells. Accumulating evidence indicates that efficient autophagy acts as a bona fide tumor suppressor mechanism, whereas impaired autophagy is a hallmark of cancer cells. The mechanisms of tumor-suppressive function of autophagy are not fully understood;recent studies indicate that a major role of autophagy is to eliminate dysfunctional mitochondria overproducing reactive oxygen species (ROS), and thus to prevent mutagenic oxidative stress. In this application, we propose a novel mechanism through which HFCD accelerates pancreatic tumorigenesis. Our overall hypothesis is that oncogenic Kras and HFCD act synergistically to impair autophagy and cause mitochondrial dysfunction, in particular, overproduction of reactive oxygen species (ROS). In turn, this results in accumulation of mitochondria overproducing ROS and persistent oxidative stress, promoting tumorigenesis. Importantly, the autophagic and mitochondrial dysfunctions reinforce each other, creating a """"""""vicious cycle"""""""". Our hypothesis will be tested in 3 Specific Aims.
Aim 1 will determine the effects of oncogenic Kras and HFCD on autophagy and underlying mechanisms.
Aim 2 will determine the effects of oncogenic Kras and HFCD on mitochondrial dysfunction and the underlying mechanisms. In the Aim 3 we will determine the role of impaired autophagy and mitochondrial ROS in tumorigenesis in Kras mice fed HFCD. The proposal will utilize genetically engineered animals, cell culture systems and various biochemical cell biology and microscopy techniques to test the hypotheses.

Public Health Relevance

The project will elucidate the roles of autophagy, and mitochondrial dysfunctions in pancreatic tumorigenesis. The results will suggest novel targets for therapeutic interventions to restore autophagy, decrease oxidative stress, and slow down tumorigenesis. The combined effect of dietary and genetic (Kras mutation) factors on autophagy and mitochondrial function has not been studied in any organ, and the results may also be transferable to the effects of HFCD on tumorigenesis in other organs.

National Institute of Health (NIH)
National Cancer Institute (NCI)
Research Program Projects (P01)
Project #
Application #
Study Section
Special Emphasis Panel (ZCA1-RPRB-B)
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of California Los Angeles
Los Angeles
United States
Zip Code
Eibl, Guido; Cruz-Monserrate, Zobeida; Korc, Murray et al. (2018) Diabetes Mellitus and Obesity as Risk Factors for Pancreatic Cancer. J Acad Nutr Diet 118:555-567
Xu, Mu; Jung, Xiaoman; Hines, O Joe et al. (2018) Obesity and Pancreatic Cancer: Overview of Epidemiology and Potential Prevention by Weight Loss. Pancreas 47:158-162
Zheng, Han; You, Yang; Hua, Meiyun et al. (2018) Chlorophyllin Modulates Gut Microbiota and Inhibits Intestinal Inflammation to Ameliorate Hepatic Fibrosis in Mice. Front Physiol 9:1671
Waldron, Richard T; Su, Hsin-Yuan; Piplani, Honit et al. (2018) Ethanol Induced Disordering of Pancreatic Acinar Cell Endoplasmic Reticulum: An ER Stress/Defective Unfolded Protein Response Model. Cell Mol Gastroenterol Hepatol 5:479-497
Kaur, Kawaljit; Chang, Hui-Hua; Topchyan, Paytsar et al. (2018) Deficiencies in Natural Killer Cell Numbers, Expansion, and Function at the Pre-Neoplastic Stage of Pancreatic Cancer by KRAS Mutation in the Pancreas of Obese Mice. Front Immunol 9:1229
Jin, Yi-Ping; Valenzuela, Nicole M; Zhang, Xiaohai et al. (2018) HLA Class II-Triggered Signaling Cascades Cause Endothelial Cell Proliferation and Migration: Relevance to Antibody-Mediated Transplant Rejection. J Immunol 200:2372-2390
Edderkaoui, Mouad; Chheda, Chintan; Soufi, Badr et al. (2018) An Inhibitor of GSK3B and HDACs Kills Pancreatic Cancer Cells and Slows Pancreatic Tumor Growth and Metastasis in Mice. Gastroenterology 155:1985-1998.e5
Yang, Zemin; Liu, Yu; Qin, Lan et al. (2017) Cathepsin H-Mediated Degradation of HDAC4 for Matrix Metalloproteinase Expression in Hepatic Stellate Cells: Implications of Epigenetic Suppression of Matrix Metalloproteinases in Fibrosis through Stabilization of Class IIa Histone Deacetylases. Am J Pathol 187:781-797
Birtolo, Chiara; Pham, Hung; Morvaridi, Susan et al. (2017) Cadherin-11 Is a Cell Surface Marker Up-Regulated in Activated Pancreatic Stellate Cells and Is Involved in Pancreatic Cancer Cell Migration. Am J Pathol 187:146-155
Lew, Daniel; Afghani, Elham; Pandol, Stephen (2017) Chronic Pancreatitis: Current Status and Challenges for Prevention and Treatment. Dig Dis Sci 62:1702-1712

Showing the most recent 10 out of 124 publications