A reliable model system that is relevant to the disease in question is a critical asset to achieve development of safe and effective therapeutics. It is in particular relevant for glioblastoma, since this tumor is composed of heterogeneous multiple types of tumor cells in patients. Recent studies identified that application of the spheroid cultures enables us to maintain the original phenotypic and genetic characteristics of the parental tumors. Core C will utilize its current services to collect additional glioblastoma spheroids (GSs) from affected patients and uncover the phenotypic and genotypic characteristics of these GSs are particularly relevant to each project as detailed in aim 2. Specifically, we will establish spheroid cultures from surgical specimens and perform in vivo tumorigenicity assay to determine if our samples are able to recapitulate patients'tumors histopathologically. We also would plan to provide these services on an ongoing basis for all five years of the grant since characterized GSs transferred to each project may require re-characterization. As such, this Core will provide services essential to all 4 projects. Significance of this Core as a central biorepository will eliminate variability amongst the projects, ensuring that all projects utilize the same GSs for the proposed experiments.

Public Health Relevance

Increasing bodies of evidence suggest that long-term cultures of tumor cells in serum-containing medium, including conventional cell lines, result in undesired phenotypic and genetic transformation of the original tumors. Our spheroid cultures from surgical specimens will create concrete path for the proposed projects to target the right kinds of tumor cells to evaluate therapeutics. Characterization of the samples with the proposed spheroid cultures will also deepen our understanding of the diseases in question.

National Institute of Health (NIH)
Research Program Projects (P01)
Project #
Application #
Study Section
Special Emphasis Panel (ZCA1)
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Ohio State University
United States
Zip Code
Ouchi, Rie; Okabe, Sachiko; Migita, Toshiro et al. (2016) Senescence from glioma stem cell differentiation promotes tumor growth. Biochem Biophys Res Commun 470:275-81
Huang, Tianzhi; Alvarez, Angel A; Pangeni, Rajendra P et al. (2016) A regulatory circuit of miR-125b/miR-20b and Wnt signalling controls glioblastoma phenotypes through FZD6-modulated pathways. Nat Commun 7:12885
Chen, Xilin; Han, Jianfeng; Chu, Jianhong et al. (2016) A combinational therapy of EGFR-CAR NK cells and oncolytic herpes simplex virus 1 for breast cancer brain metastases. Oncotarget 7:27764-77
Cheng, Peng; Wang, Jia; Waghmare, Indrayani et al. (2016) FOXD1-ALDH1A3 Signaling Is a Determinant for the Self-Renewal and Tumorigenicity of Mesenchymal Glioma Stem Cells. Cancer Res 76:7219-7230
Ricklefs, Franz; Mineo, Marco; Rooj, Arun K et al. (2016) Extracellular Vesicles from High-Grade Glioma Exchange Diverse Pro-oncogenic Signals That Maintain Intratumoral Heterogeneity. Cancer Res 76:2876-81
Goins, William F; Hall, Bonnie; Cohen, Justus B et al. (2016) Retargeting of herpes simplex virus (HSV) vectors. Curr Opin Virol 21:93-101
Yoo, Ji Young; Jaime-Ramirez, Alena Cristina; Bolyard, Chelsea et al. (2016) Bortezomib Treatment Sensitizes Oncolytic HSV-1-Treated Tumors to NK Cell Immunotherapy. Clin Cancer Res 22:5265-5276
Freud, Aharon G; Keller, Karen A; Scoville, Steven D et al. (2016) NKp80 Defines a Critical Step during Human Natural Killer Cell Development. Cell Rep 16:379-91
Xiao, Run; Bergin, Stephen M; Huang, Wei et al. (2016) Environmental and Genetic Activation of Hypothalamic BDNF Modulates T-cell Immunity to Exert an Anticancer Phenotype. Cancer Immunol Res 4:488-97
Kim, Sung-Hak; Ezhilarasan, Ravesanker; Phillips, Emma et al. (2016) Serine/Threonine Kinase MLK4 Determines Mesenchymal Identity in Glioma Stem Cells in an NF-κB-dependent Manner. Cancer Cell 29:201-13

Showing the most recent 10 out of 80 publications