In this Program Project "Systems Biochemistry in Lung Cancer: toward a mechanistic understanding of NSCLC" we aim to achieve a better understanding of the basic biochemistry of lung cancers as a prerequisite to mechanism-based reliable early detection of the disease, and to improved approaches to treatment. The role of the Administrative, Bioinformatics and Biostatistics Core is to provide overall administration and oversight to the project directors and core leaders (T. W-M. Fan, Ph.D., Project 1;J. Yan, M.D., Ph.D., Project 2;A. N. Lane, Ph.D., Project 3;R. M, Higashi, Ph.D., Core B, Analytical) on this Program Project. In addition, Biostatistics and Informatics support (leaders S. N. Rai, Ph.D. and H. N. B Moseley, Ph.D.) for the Projects will be provided through this Core. To ensure smooth interoperability of the program, the administrative core will be responsible for maintaining the budgets and cost reporting of the projects and cores as well as coordinating annual reports, regular meetings among the project personnel and the internal and external advisory committees. The primary objective of the Bioinformatics / Biostatistics portion of this core is to provide support for investigators performing translational research and Informatics for biochemical pathway reconstruction and flux modeling. The core services are matched to the needs of each project and cover a full range of services from collaboration and routine service;protocol preparation and review;development of informatics approaches to ensure interoperability;and biochemical network analysis.

Public Health Relevance

Deaths from lung cancer are the highest among all cancers in North America and cure rates remain low. We seek to gain a deeper understanding of lung cancer biochemistry using a novel approach we developed. Improved knowledge will have direct impact on early diagnosis and prognosis. The biochemical differences between lung cancer subtypes can be related to appropriate treatments.

National Institute of Health (NIH)
National Cancer Institute (NCI)
Research Program Projects (P01)
Project #
Application #
Study Section
Special Emphasis Panel (ZCA1-RPRB-0)
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of Kentucky
United States
Zip Code
Higashi, Richard M; Fan, Teresa W-M; Lorkiewicz, Pawel K et al. (2014) Stable isotope-labeled tracers for metabolic pathway elucidation by GC-MS and FT-MS. Methods Mol Biol 1198:147-67
Wu, Pin; Wu, Dang; Ni, Chao et al. (2014) ??T17 cells promote the accumulation and expansion of myeloid-derived suppressor cells in human colorectal cancer. Immunity 40:785-800
Xie, Han; Hanai, Jun-Ichi; Ren, Jian-Guo et al. (2014) Targeting lactate dehydrogenase--a inhibits tumorigenesis and tumor progression in mouse models of lung cancer and impacts tumor-initiating cells. Cell Metab 19:795-809