Epigenetie alterations have been hypothesized to play important roles in carcinogenesis and tumor progression, including the development of CRPC. Work from several groups including our own demonstrates a continued critical role for the androgen receptor (AR) in CRPC. In addition, recent work from our lab defining the AR cistromes in a model of androgen-dependent prostate cancer and CRPC has shown that AR is recruited to distinct genomic sites in CRPC where it executes a distinct transcriptional program. These CRPC selective AR binding sites harbor epigenetie chromatin marks characteristic of active transcriptional enhancers and regulate a set of cell cycle regulatory genes including CDK1, CCNB1, CDC20 and UBE2C that are required for CRPC growth. These same genes are over-expressed in authentic cases of CRPC. EZH2, a SET domain histone methyltransferase known to play a role in gene silencing through H3K27 methylation is up-regulated in CRPC. In preliminary studies we have found that EZH2 can be recruited to the cis-regulatory elements of CRPC selective AR target genes such as CDK1 and UBE2C, forming a complex with AR in prostate cancer cells. Surprisingly, EZH2 directly up-regulates these AR targets in CRPC cells but not in androgen-dependent prostate cancer cells. In addition EZH2 is required for the growth of CRPC cells. Thus the overall hypothesis that will be tested in this study is that the epigenetie regulator EZH2 reprograms AR function in CRPC to stimulate the induction of a set of cell cycle regulatory genes required for the AR dependent growth of CRPC. |n Aim 1 we will analyze EZH2-dependent gene expression profiles and cistromes in CRPC cells;
in Aim 2 we will determine the mechanisms underlying the interaction between AR and EZH2 in modulating the specific subset of genes up-regulated in CRPC by AR;and in Aim 3 we will utilize the Biospecimen and Animal Models Core to profile gene expression, epigenetie chromatin modifications, EZH2 and AR cistromes and DNAse I hypersensitivity in xenograft models of CRPC in order to validate the findings from cell culture.

Public Health Relevance

Understanding of the function of the androgen receptor (AR) in castration resistant prostate cancer (CRPC) will lead to improvements in therapy for this lethal form of the disease. Epigenetie reprogramming by EZH2 presents a potential novel mechanism of activation of AR function in CRPC and if validated a potential new therapeutic target.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Research Program Projects (P01)
Project #
1P01CA163227-01A1
Application #
8475913
Study Section
Project Start
2013-05-24
Project End
2018-04-30
Budget Start
2013-05-24
Budget End
2014-04-30
Support Year
1
Fiscal Year
2013
Total Cost
$360,869
Indirect Cost
$68,118
Name
Beth Israel Deaconess Medical Center
Department
Type
DUNS #
071723621
City
Boston
State
MA
Country
United States
Zip Code
02215
Arai, Seiji; Jonas, Oliver; Whitman, Matthew A et al. (2018) Tyrosine Kinase Inhibitors Increase MCL1 Degradation and in Combination with BCLXL/BCL2 Inhibitors Drive Prostate Cancer Apoptosis. Clin Cancer Res 24:5458-5470
Viswanathan, Srinivas R; Ha, Gavin; Hoff, Andreas M et al. (2018) Structural Alterations Driving Castration-Resistant Prostate Cancer Revealed by Linked-Read Genome Sequencing. Cell 174:433-447.e19
Russo, Joshua W; Gao, Ce; Bhasin, Swati S et al. (2018) Downregulation of Dipeptidyl Peptidase 4 Accelerates Progression to Castration-Resistant Prostate Cancer. Cancer Res 78:6354-6362
Sowalsky, Adam G; Ye, Huihui; Bhasin, Manoj et al. (2018) Neoadjuvant-Intensive Androgen Deprivation Therapy Selects for Prostate Tumor Foci with Diverse Subclonal Oncogenic Alterations. Cancer Res 78:4716-4730
Zhu, Yezi; Sharp, Adam; Anderson, Courtney M et al. (2018) Novel Junction-specific and Quantifiable In Situ Detection of AR-V7 and its Clinical Correlates in Metastatic Castration-resistant Prostate Cancer. Eur Urol 73:727-735
Penning, Trevor M (2018) Dehydroepiandrosterone (DHEA)-SO4 Depot and Castration-Resistant Prostate Cancer. Vitam Horm 108:309-331
Barnard, Monique; Quanson, Jonathan L; Mostaghel, Elahe et al. (2018) 11-Oxygenated androgen precursors are the preferred substrates for aldo-keto reductase 1C3 (AKR1C3): Implications for castration resistant prostate cancer. J Steroid Biochem Mol Biol 183:192-201
Ganaie, Arsheed A; Beigh, Firdous H; Astone, Matteo et al. (2018) BMI1 Drives Metastasis of Prostate Cancer in Caucasian and African-American Men and Is A Potential Therapeutic Target: Hypothesis Tested in Race-specific Models. Clin Cancer Res 24:6421-6432
Chen, Sen; Cai, Changmeng; Sowalsky, Adam G et al. (2018) BMX-Mediated Regulation of Multiple Tyrosine Kinases Contributes to Castration Resistance in Prostate Cancer. Cancer Res 78:5203-5215
Lam, Hung-Ming; Corey, Eva (2018) Supraphysiological Testosterone Therapy as Treatment for Castration-Resistant Prostate Cancer. Front Oncol 8:167

Showing the most recent 10 out of 90 publications