The three research projects that comprise this Program Project are all focused on understanding molecular and cellular events and mechanisms leading to bladder carcinogenesis of both major pathways of low-grade, non-invasive and high-grade, invasive bladder cancer. In addition t o t h e intellectual and experimental synergies that link the individual projects into a cohesive program, each ofthe three proposed research plans all depend upon a common set of critical reagents and services made available on a continuous basis for their success. These include but are not limited to a set of cultured cell lines that represent different stages of bladder cancer, different unique mouse models of bladder cancer developed by Dr. Xue-Ru Wu, recombinant proteins, nucleic acid reagents, antibodies and cDNA constructs. Obviously, it would not make sense, nor would It be an efficient use of time, money, and resources for each laboratory to Independently generate, procure, characterize, and maintain all these reagents. Instead, we will establish a centralized Reagent and Service Core, one of whose purposes is to serve as a central repository for key reagents and provide a central supply for these important research tools that can be shared by all involved in this Program Project. In addition to the cost-effectiveness, this approach offers the advantage of ensuring the quality of these shared reagents across the individual projects. Providing supplies of cell lines, tissues and animal models from a centralized core eliminates variability in reagent handling, facilitating data comparison amongst the three individual projects. Furthermore, it promotes additional interactions among the Pis and guards against accidental loss of Invaluable reagents in emergency situations such as power outages (which we last experienced in 2003). Finally, the Core will also provide pathology and statistical support for the individual projects. In this section ofthe Program Project application, we describe these reagents, how the Core functions to control quality and maintain databases, the contribution ofthe core to the individual research projects, and a plan for prioritizing usage of core services.
The specific aims ofthe Core are: i) To maintain a centralized supply and distribute a common core set of reagents vital to support the research efforts of individual component projects;ii) To collect human and mouse specimens and provide the necessary pathology support service;and iii) To provide dedicated statistical support.

Public Health Relevance

;Bladder cancer (BC) remains a leading cause of death from cancer in both men and women. The three individual, yet inter-related research projects that make up this Program Project all seek to understand bladder cancer pathogenesis and the mechanisms involved as well. Besides being scientifically inter-related, the three projects depend upon a common set of reagents and services made available to them for their success. The Core bundles these critical reagents and services together and serves as a central clearinghouse, ensuring their timely, cost-effective distribution and direcfiy facilitating the Program's success.

National Institute of Health (NIH)
Research Program Projects (P01)
Project #
Application #
Study Section
Special Emphasis Panel (ZCA1)
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
New York University
New York
United States
Zip Code
Zeng, Xingruo; Xu, Zhou; Gu, Jiayan et al. (2016) Induction of miR-137 by Isorhapontigenin (ISO) Directly Targets Sp1 Protein Translation and Mediates Its Anticancer Activity Both In Vitro and In Vivo. Mol Cancer Ther 15:512-22
Xu, Zhou; Zeng, Xingruo; Xu, Jiawei et al. (2016) Isorhapontigenin suppresses growth of patient-derived glioblastoma spheres through regulating miR-145/SOX2/cyclin D1 axis. Neuro Oncol 18:830-9
Zhou, Haiping; He, Feng; Mendelsohn, Cathy L et al. (2016) FGFR3b Extracellular Loop Mutation Lacks Tumorigenicity In Vivo but Collaborates with p53/pRB Deficiency to Induce High-grade Papillary Urothelial Carcinoma. Sci Rep 6:25596
Wang, Y; Xu, J; Gao, G et al. (2016) Tumor-suppressor NFκB2 p100 interacts with ERK2 and stabilizes PTEN mRNA via inhibition of miR-494. Oncogene 35:4080-90
Zhou, Haiping; Wang, Xing; Mo, Lan et al. (2016) Role of isoenzyme M2 of pyruvate kinase in urothelial tumorigenesis. Oncotarget 7:23947-60
Madka, Venkateshwar; Mohammed, Altaf; Li, Qian et al. (2016) Targeting mTOR and p53 Signaling Inhibits Muscle Invasive Bladder Cancer In Vivo. Cancer Prev Res (Phila) 9:53-62
Liu, Zhongbo; Yokoyama, Noriko N; Blair, Christopher A et al. (2016) High Sensitivity of an Ha-RAS Transgenic Model of Superficial Bladder Cancer to Metformin Is Associated with ∼240-Fold Higher Drug Concentration in Urine than Serum. Mol Cancer Ther 15:430-8
Jiang, Guosong; Wu, Amy D; Huang, Chao et al. (2016) Isorhapontigenin (ISO) Inhibits Invasive Bladder Cancer Formation In Vivo and Human Bladder Cancer Invasion In Vitro by Targeting STAT1/FOXO1 Axis. Cancer Prev Res (Phila) 9:567-80
Wankel, Bret; Ouyang, Jiangyong; Guo, Xuemei et al. (2016) Sequential and compartmentalized action of Rabs, SNAREs, and MAL in the apical delivery of fusiform vesicles in urothelial umbrella cells. Mol Biol Cell 27:1621-34
Liang, Yuguang; Zhu, Junlan; Huang, Haishan et al. (2016) SESN2/sestrin 2 induction-mediated autophagy and inhibitory effect of isorhapontigenin (ISO) on human bladder cancers. Autophagy 12:1229-39

Showing the most recent 10 out of 42 publications