Despite a vast literature showing that childhood sarcoma cells utilize insulin-like growth factors (IGFs) to maintain autocrine and paracrine-driven proliferation, antibodies that block ligand binding to the type IGF-1 receptor (IGF-1 R) have proven disappointing in the clinic. Our data show that one effect of IGF-1 R-targeted antibodies is to inhibit angiogenesis and sarcoma cell proliferation. However, tumor-secreted IGF-2, signaling through the insulin receptor (IN-R) circumvents these effects. We will take a candidate gene approach to test whether tumor sensitivity to IGF-1 R-targeted antibody therapy can be predicted from the expression of IGF/IN receptors and ligands, before treatment or after treatment. We will take a less-biased approach by screening a receptor tyrosine kinase siRNA library to identify receptors that may confer resistance to antibody treatment.
In Aim 2, we will pursue approaches to enhance the antitumor activity of IGF-1 R-targeted antibodies by blocking IGF-2 signaling using ligand binding antibodies, small molecule inhibitors of IGF-1 R/IN-R, or Akt signaling. Preliminary results demonstrate that IGF-2 robustly activates STATS signaling via TOR in both vascular endothelial and sarcoma cells. Further, STATS cross-talks with N F - K B , consequently, we will evaluate combinations of IGF-directed antibodies combined with inhibitors of these pathways and determine their effects on angiogenesis and tumor cell proliferation in vitro and in sarcoma xenograft models.
In Aim 3, we will explore the mechanism(s) by which IGFs protect against apoptosis induced by TOR inhibitors in some sarcoma cells. Our previous data showed that IGF-1 induces phosphorylation of BAD, through an Akt- independent pathway in vitro, and IGF-IR targeted antibody suppressed this in vitro and in a Ewing sarcoma xenograft model leading to rapamycin-induced apoptosis. We will explore how IGF-2 can protect cells from rapamycin or TOR kinase inhibitors, and determine whether IGF-2 protection is mediated through STATS signaling, and whether this can be inhibited by antibodies that block IGF-2/IN-R signaling or by inhibitors of STATS. pProject 3 is highly interactive with Project 2 (STATS signaling), impacts the role of N F - K B / S T A T S signaling in Project 1 and relies heavily on Cores (1-3).

Public Health Relevance

Insulin-like growth factor signaling is dysregulated in each sarcoma histotype being studied. Work proposed will elucidate the mechanism(s) of intrinsic and acquired resistance to IGF-1 R-targeted antibody therapy, and test potential combinations that will overcome or reverse this resistance. Our studies will also identify pathways by which IGFs protect sarcoma cells from apoptosis, and examine strategies for selectively sensitizing vascular endothelial cells and sarcoma cells to undergo apoptosis in response to IGF-IR block.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Research Program Projects (P01)
Project #
5P01CA165995-04
Application #
9144336
Study Section
Special Emphasis Panel (ZCA1-RPRB-C)
Project Start
Project End
Budget Start
2016-06-01
Budget End
2017-05-31
Support Year
4
Fiscal Year
2016
Total Cost
$277,840
Indirect Cost
$34,304
Name
University of Texas Health Science Center
Department
Type
DUNS #
800772162
City
San Antonio
State
TX
Country
United States
Zip Code
78229
Dowless, Michele; Lowery, Caitlin D; Shackleford, Terry et al. (2018) Abemaciclib Is Active in Preclinical Models of Ewing Sarcoma via Multipronged Regulation of Cell Cycle, DNA Methylation, and Interferon Pathway Signaling. Clin Cancer Res 24:6028-6039
Gross, Amy C; Cam, Hakan; Phelps, Doris A et al. (2018) IL-6 and CXCL8 mediate osteosarcoma-lung interactions critical to metastasis. JCI Insight 3:
Saraf, Amanda J; Fenger, Joelle M; Roberts, Ryan D (2018) Osteosarcoma: Accelerating Progress Makes for a Hopeful Future. Front Oncol 8:4
Bandyopadhyay, Abhik; Favours, Edward; Phelps, Doris A et al. (2018) Evaluation of patritumab with or without erlotinib in combination with standard cytotoxic agents against pediatric sarcoma xenograft models. Pediatr Blood Cancer 65:
Waters, Andrew M; Ozkan-Dagliyan, Irem; Vaseva, Angelina V et al. (2017) Evaluation of the selectivity and sensitivity of isoform- and mutation-specific RAS antibodies. Sci Signal 10:
Zhou, Xinhui; Liu, Weijin; Hu, Xing et al. (2017) Regulation of CHK1 by mTOR contributes to the evasion of DNA damage barrier of cancer cells. Sci Rep 7:1535
Yu, Peter Y; Gardner, Heather L; Roberts, Ryan et al. (2017) Target specificity, in vivo pharmacokinetics, and efficacy of the putative STAT3 inhibitor LY5 in osteosarcoma, Ewing's sarcoma, and rhabdomyosarcoma. PLoS One 12:e0181885
Jayabal, Panneerselvam; Houghton, Peter J; Shiio, Yuzuru (2017) EWS-FLI-1 creates a cell surface microenvironment conducive to IGF signaling by inducing pappalysin-1. Genes Cancer 8:762-770
Cam, Maren; Gardner, Heather L; Roberts, Ryan D et al. (2016) ?Np63 mediates cellular survival and metastasis in canine osteosarcoma. Oncotarget 7:48533-48546
Wu, Xiaojuan; Xiao, Hui; Wang, Ruoning et al. (2016) Persistent GP130/STAT3 Signaling Contributes to the Resistance of Doxorubicin, Cisplatin, and MEK Inhibitor in Human Rhabdomyosarcoma Cells. Curr Cancer Drug Targets 16:631-8

Showing the most recent 10 out of 22 publications