Graft-versus-host-disease (GVHD) is a life threatening complication of hematopoietic stem cell transfer (HSCT) and is the major factor in failure of HSCT. Current treatment of GVHD most commonly involves the use of immunosuppressive drugs and hence places the recipient in an immunocompromised state. Strategies that allow HSCT without the complication of GVHD would open the possibility of broader use of HSCT in the treatment of several hematologic malignancies. The major obstacle for routine use of HSCT is the profound complications that can occur from GVHD. It is well known that GVHD is mediated by activated T cells therefore an early approach was to completely delete T cells from the donor cell population prior to transfer. While this approach eliminated GVHD, it also profoundly inhibited effective engraftment as well as development of the therapeutic graft-versus-leukemia (GVL) response. Therefore current protocols include T cells in the donor cell population. This results in a high incidence of GVHD in adults receiving HSCT. Our preliminary data, presented in this application, supports a role for substrates of y-secretase in GVHD. Our data clearly demonstrate that substrates of y-secretase play an important role in GVHD and treatment of recipients with GSI inhibits GVHD. We also show that GVHD is accompanied by activation of Notch1 in donor T cells, suggesting that an important target of GSI in GVHD is Notch1. Lastly our studies with Notch deficient T cells firmly establish that Notch is one relevant target of GSI in these experiments. The experiments in this project are designed to test the hypothesis that y-secretase inhibitors may have significant clinical utility in the treatment of GVHD while maintaining graft-versus-leukemia (GVL). We then propose a series of experiments to determine the mechanisms by which y-secretase inhibitors function to block GVHD and suggest that such an understanding may lead to rational mechanistic based approach to the treatment of GVHD.

Public Health Relevance

This project will allow for a better understanding of the factors that lead to a debilitating disease that frequently accompanies hematopoietic stem transfer. Experiments are proposed to both identify factors that lead to graft versus host disease, as well as, to suggest treatments that may prove efficiacious in the treatment of this disease.

National Institute of Health (NIH)
National Cancer Institute (NCI)
Research Program Projects (P01)
Project #
Application #
Study Section
Special Emphasis Panel (ZCA1)
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of Massachusetts Amherst
United States
Zip Code
Ozay, E Ilker; Gonzalez-Perez, Gabriela; Torres, Joe A et al. (2016) Intracellular Delivery of Anti-pPKCθ (Thr538) via Protein Transduction Domain Mimics for Immunomodulation. Mol Ther 24:2118-2130
deRonde, Brittany M; Posey, Nicholas D; Otter, Ronja et al. (2016) Optimal Hydrophobicity in Ring-Opening Metathesis Polymerization-Based Protein Mimics Required for siRNA Internalization. Biomacromolecules 17:1969-77
Gordon, Mallory R; Canakci, Mine; Li, Longyu et al. (2015) Field Guide to Challenges and Opportunities in Antibody-Drug Conjugates for Chemists. Bioconjug Chem 26:2198-215
Yun, Jieun; Espinoza, Ingrid; Pannuti, Antonio et al. (2015) p53 Modulates Notch Signaling in MCF-7 Breast Cancer Cells by Associating With the Notch Transcriptional Complex Via MAML1. J Cell Physiol 230:3115-27
Kuksin, Christina Arieta; Minter, Lisa M (2015) The Link between Autoimmunity and Lymphoma: Does NOTCH Signaling Play a Contributing Role? Front Oncol 5:51
Park, Hyo-Jin; Ran, Yong; Jung, Joo In et al. (2015) The stress response neuropeptide CRF increases amyloid-β production by regulating γ-secretase activity. EMBO J 34:1674-86
Wongchana, Wipawee; Lawlor, Rebecca G; Osborne, Barbara A et al. (2015) Impact of Notch1 Deletion in Macrophages on Proinflammatory Cytokine Production and the Outcome of Experimental Autoimmune Encephalomyelitis. J Immunol 195:5337-46
deRonde, Brittany M; Torres, Joe A; Minter, Lisa M et al. (2015) Development of Guanidinium-Rich Protein Mimics for Efficient siRNA Delivery into Human T Cells. Biomacromolecules 16:3172-9
Jung, Joo In; Price, Ashleigh R; Ladd, Thomas B et al. (2015) Cholestenoic acid, an endogenous cholesterol metabolite, is a potent γ-secretase modulator. Mol Neurodegener 10:29
Arieta Kuksin, Christina; Gonzalez-Perez, Gabriela; Minter, Lisa M (2015) CXCR4 expression on pathogenic T cells facilitates their bone marrow infiltration in a mouse model of aplastic anemia. Blood 125:2087-94

Showing the most recent 10 out of 24 publications