NLR in host response to y-herpesviruses The Nod-like Receptor (NLR) family represents intracellular sensors important in initiating innate immunity. NLRs activate several classes of innate immune response proteins, including inflammatory Caspases involved in cytokine processing and apoptosis, components of the IKB Kinase (IKK) complex responsible for NF-KB induction, and the MAVS-dependent pathway for activating IRF family transcription factors that induce Interferons. Cytosolic viral DNA activates NLRs, defining an innate immunity mechanism for initiating host responses to infectious DNA viruses. The y-herpesviruses such as Human Herpesvirus 8 (HHV8) (the agent responsible for Kaposi Sarcoma) and its mouse counterpart MHV-68 are DNA viruses whose pathobiology includes both lytic and latent types of infection. It remains unclear how these viruses thwart host defense mechanisms to propagate their genomes through cycles of acute infection and reactivation from latent infection. In this Project, the hypothesis will be tested that y-herpesviruses HHV8 and MHV68 suppress innate immune responses by modulating NLRs. Preliminary data are presented that demonstrate (a) suppression of MHV-68 viral gene expression by NLRs;(b) discovery of viral gene products that interact with NLRs;and (c) effects of y-herpesviruses on expression of cellular microRNAs (miRs) that modulate NLR activity in infected cells. Our proposed Specific Aims are to: (1) Explore the effects of NLRs on y-herpesvirus viral replication and viral gene expression;(2) Determine the MHV-68 and HHVB viral gene products that interact with inflammasome components, assessing the functional significance of these protein interactions for viral replication and pathogenesis;(3) Elucidate the molecular mechanisms by which NLR-interacting viral gene products and virus-regulated miRs modulate NLR activity;and (4) Determine the impact of viral gene products (proteins and miRs) that regulate NLRs on immune responses to y-herpesviruses and apply findings towards vaccine strategies. The studies will provide insights into the roles of NLR-family proteins in host defense against y-herpesviruses, and aid development of vaccine strategies

Public Health Relevance

y-Herpesviruses are a major health challenge with no effective vaccines and few therapeutic options. This proposal seeks to understand the role of a class of immune proteins called NLRs in host defenses against y? herpesviruses; using the resulting information to devise vaccine strategies.

National Institute of Health (NIH)
National Cancer Institute (NCI)
Research Program Projects (P01)
Project #
Application #
Study Section
Special Emphasis Panel (ZCA1-RPRB-J (O1))
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of California Los Angeles
Los Angeles
United States
Zip Code
Koh, Mei Yee; Gagea, Mihai; Sargis, Timothy et al. (2016) A new HIF-1α/RANTES-driven pathway to hepatocellular carcinoma mediated by germline haploinsufficiency of SART1/HAF in mice. Hepatology 63:1576-91
Xiong, Xiao-Peng; Kurthkoti, Krishna; Chang, Kung-Yen et al. (2016) miR-34 Modulates Innate Immunity and Ecdysone Signaling in Drosophila. PLoS Pathog 12:e1006034
Gong, Danyang; Kim, Yong Hoon; Xiao, Yuchen et al. (2016) A Herpesvirus Protein Selectively Inhibits Cellular mRNA Nuclear Export. Cell Host Microbe 20:642-653
Ward-Kavanagh, Lindsay K; Lin, Wai Wai; Šedý, John R et al. (2016) The TNF Receptor Superfamily in Co-stimulating and Co-inhibitory Responses. Immunity 44:1005-19
Scarzello, Anthony J; Jiang, Qun; Back, Timothy et al. (2016) LTβR signalling preferentially accelerates oncogenic AKT-initiated liver tumours. Gut 65:1765-75
Feng, Jiaying; Gong, Danyang; Fu, Xudong et al. (2015) M1 of Murine Gamma-Herpesvirus 68 Induces Endoplasmic Reticulum Chaperone Production. Sci Rep 5:17228
Shah, Priya S; Wojcechowskyj, Jason A; Eckhardt, Manon et al. (2015) Comparative mapping of host-pathogen protein-protein interactions. Curr Opin Microbiol 27:62-8
York, Autumn G; Williams, Kevin J; Argus, Joseph P et al. (2015) Limiting Cholesterol Biosynthetic Flux Spontaneously Engages Type I IFN Signaling. Cell 163:1716-29
Lau, E; Sedy, J; Sander, C et al. (2015) Transcriptional repression of IFNβ1 by ATF2 confers melanoma resistance to therapy. Oncogene 34:5739-48
Davis, Zoe H; Verschueren, Erik; Jang, Gwendolyn M et al. (2015) Global mapping of herpesvirus-host protein complexes reveals a transcription strategy for late genes. Mol Cell 57:349-60

Showing the most recent 10 out of 13 publications