The overall objective of Project 4 is to discover and exploit extrinsic mechanisms of therapy resistance by focusing on the contribution of tumor-associated macrophages (TAMs) and tumor-associated fibroblasts (TAFs) in the tumor microenvironment (TME). Our overarching hypothesis is that TAMs and TAFs cooperate in creating a favorable tumorigenic environment that ultimately leads to the emergence of therapeutic resistance and immune escape in NB. We also postulate that as tumors are treated, the TME is altered in its composition and function to become increasingly favorable to therapeutic resistance. This hypothesis is based on published and preliminary data from our group demonstrating that TAMs and TAFs are abundantly present in an inflammatory subtype of NB at diagnosis associated with a high risk of recurrence and extremely poor prognosis. We also have evidence that TAMs and TAFs when exposed to tumor cells stimulate their proliferation, survival and drug-resistance via the paracrine production of pro-tumorigenic cytokines and chemokines that activate in tumor cells signaling pathways such as STAT3 and ERK. Our project has 3 aims.
Aim 1, will examine mechanisms of cooperation between TAMs and TAFs, testing the hypothesis that in MYCN amplified tumors that do not produce the TAM chemoattractant CCL-2/MCP-1, TAFs are a source of this chemokine. We will also examine the contribution of cytokines and chemokines generated in co-culture of TAMs, TAFs and NB cells and the signaling pathways they activate in NB cells leading to increased proliferation and survival.
Aim 2, will examine changes in the TME landscape secondary to chemotherapy in syngeneic murine NB models (with Project 2) and validate the data in patient tumor samples obtained via Core B. By examining changes in the transcriptome that occur in NB cells chronically exposed to TAM/TAF and their potential epigenetic origin (with Project 3), aim 2 will also identify vulnerabilities to prevent resistance to chemotherapy or targeted therapy (with Project 1).
Aim 3, will then translate these discoveries in pre-clinical tumor models. We will test the therapeutic efficacy of the most promising agents targeting TAFs, TAMs, or pathways they activate in tumor cells in combination with chemotherapy or immunotherapy (with Project 5), using human NB lines and patient-derived xenotransplants in immunodeficient mice as well as murine cell lines in immunocompetent mice (with Project 2), The most effective agent(s) will then be proposed for early phase clinical trials to the NANT (Core B). Thus Project 4 brings a unique contribution to the overall objective of this PPG through its focus on the TME and on non-autonomous mechanisms leading towards therapeutic resistance and immune escape.

Public Health Relevance

Project 4 brings a unique perspective to the PPG by focusing on understanding how fibroblasts and macrophages in the tumor microenvironment promote the emergence of therapy-resistant neuroblastoma cells in a non-autonomous manner. Discoveries made will identify therapeutic agents aimed at preventing the emergence of resistance when used in combination with immunotherapy and/or chemotherapy.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Research Program Projects (P01)
Project #
5P01CA217959-02
Application #
9567118
Study Section
Special Emphasis Panel (ZCA1)
Project Start
Project End
Budget Start
2018-09-01
Budget End
2019-08-31
Support Year
2
Fiscal Year
2018
Total Cost
Indirect Cost
Name
Children's Hospital of Los Angeles
Department
Type
DUNS #
052277936
City
Los Angeles
State
CA
Country
United States
Zip Code
90027
Tolbert, Vanessa P; Matthay, Katherine K (2018) Neuroblastoma: clinical and biological approach to risk stratification and treatment. Cell Tissue Res 372:195-209
Rajbhandari, Presha; Lopez, Gonzalo; Capdevila, Claudia et al. (2018) Cross-Cohort Analysis Identifies a TEAD4-MYCN Positive Feedback Loop as the Core Regulatory Element of High-Risk Neuroblastoma. Cancer Discov 8:582-599
Fan, Qi Wen; Nicolaides, Theodore P; Weiss, William A (2018) Inhibiting 4EBP1 in Glioblastoma. Clin Cancer Res 24:14-21
Pinto, Navin; DuBois, Steven G; Marachelian, Araz et al. (2018) Phase I study of vorinostat in combination with isotretinoin in patients with refractory/recurrent neuroblastoma: A new approaches to Neuroblastoma Therapy (NANT) trial. Pediatr Blood Cancer 65:e27023
Iniguez, Amanda Balboni; Alexe, Gabriela; Wang, Emily Jue et al. (2018) Resistance to Epigenetic-Targeted Therapy Engenders Tumor Cell Vulnerabilities Associated with Enhancer Remodeling. Cancer Cell 34:922-938.e7
An, Zhenyi; Aksoy, Ozlem; Zheng, Tina et al. (2018) Epidermal growth factor receptor and EGFRvIII in glioblastoma: signaling pathways and targeted therapies. Oncogene 37:1561-1575
Villablanca, Judith G; Ji, Lingyun; Shapira-Lewinson, Adi et al. (2018) Predictors of response, progression-free survival, and overall survival using NANT Response Criteria (v1.0) in relapsed and refractory high-risk neuroblastoma. Pediatr Blood Cancer 65:e26940
Hadjidaniel, Michael D; Muthugounder, Sakunthala; Hung, Long T et al. (2017) Tumor-associated macrophages promote neuroblastoma via STAT3 phosphorylation and up-regulation of c-MYC. Oncotarget 8:91516-91529
Lifshitz, Veronica; Priceman, Saul J; Li, Wenzhao et al. (2017) Sphingosine-1-Phosphate Receptor-1 Promotes Environment-Mediated and Acquired Chemoresistance. Mol Cancer Ther 16:2516-2527
Borriello, Lucia; Nakata, Rie; Sheard, Michael A et al. (2017) Cancer-Associated Fibroblasts Share Characteristics and Protumorigenic Activity with Mesenchymal Stromal Cells. Cancer Res 77:5142-5157