Our Program Project Grant (PPG) utilizes recent advances in chromatin biology, so-called epigenetics, to fundamentally increase our understanding of the long-lasting neural and synaptic abnormalities in the brain that underlie stimulant and opiate addiction. Our work focuses on key brain reward regions, nucleus accumbens (NAc) and areas of prefrontal cortex (PFC), which have been widely implicated in addiction. The PPG is composed of four Projects at three universities. The four PIs, Eric Nestler (Mount Sinai), Robert Malenka (Stanford), David Self (UT Southwestern), and Yasmin Hurd (Mount Sinai), are leaders in their fields who have an established history of effective collaboration and use their complementary expertise and approaches to chart a multidisciplinary course in the proposed research. Project 1 (Nestler) focuses on transcriptional and epigenetic changes induced in brain reward regions by self-administered stimulants and opiates. Project 2 (Malenka) mines those complex datasets to understand the molecular-cellular basis of neural and synaptic plasticity in brain reward neurons and how that plasticity influences circuit-level function. Projects 3 (Self) and 4 (Hurd) carry out parallel investigations into how this molecular and cellular pathology drives addiction-related behavioral abnormalities. Project 4 also validates these findings from animals in human postmortem brain tissue and thereby establishes the relevance of the basic research for human addiction. The PPG is supported by three Cores, an Administrative Core to oversee and coordinate PPG operations;an Animal and Molecular Models Core to provide animal models of addiction and the advanced tools (viral-mediated gene transfer, inducible mutations in mice, and optogenetics) to manipulate individual genes of interest or neural activity within limbic structures, and thereby provide causal evidence linking molecular-cellular-circuit plasticity to addiction-related phenomena;and a Chromatin and Gene Analysis Core to provide advanced state-of-the-art methods and bioinformatics to characterize genome-wide regulation of gene expression and chromatin modifications in addiction. This pioneering investigation of the molecular neurobiology of addiction will continue to help drive major advances in the field.

Public Health Relevance

Addiction remains one of the world's greatest public health problems, yet its pathophysiology remains incompletely understood and available treatments for addictions to various drugs of abuse are inadequately effective for most people. We believe that the most effective way of eventually developing definitive treatments and cures for addiction rests in part in a better understanding of its underlying neurobiology.

Agency
National Institute of Health (NIH)
Institute
National Institute on Drug Abuse (NIDA)
Type
Research Program Projects (P01)
Project #
2P01DA008227-22A1
Application #
8609273
Study Section
Special Emphasis Panel (ZRG1-IFCN-B (40))
Program Officer
Pollock, Jonathan D
Project Start
1997-08-01
Project End
2018-12-31
Budget Start
2014-01-01
Budget End
2014-12-31
Support Year
22
Fiscal Year
2014
Total Cost
$1,824,359
Indirect Cost
$513,852
Name
Icahn School of Medicine at Mount Sinai
Department
Neurosciences
Type
Schools of Medicine
DUNS #
078861598
City
New York
State
NY
Country
United States
Zip Code
10029
Gokce, Ozgun; Stanley, Geoffrey M; Treutlein, Barbara et al. (2016) Cellular Taxonomy of the Mouse Striatum as Revealed by Single-Cell RNA-Seq. Cell Rep 16:1126-37
Fuccillo, Marc V; Rothwell, Patrick E; Malenka, Robert C (2016) From Synapses to Behavior: What Rodent Models Can Tell Us About Neuropsychiatric Disease. Biol Psychiatry 79:4-6
Kozlenkov, Alexey; Wang, Minghui; Roussos, Panos et al. (2016) Substantial DNA methylation differences between two major neuronal subtypes in human brain. Nucleic Acids Res 44:2593-612
Cahill, Michael E; Bagot, Rosemary C; Gancarz, Amy M et al. (2016) Bidirectional Synaptic Structural Plasticity after Chronic Cocaine Administration Occurs through Rap1 Small GTPase Signaling. Neuron 89:566-82
Calipari, Erin S; Bagot, Rosemary C; Purushothaman, Immanuel et al. (2016) In vivo imaging identifies temporal signature of D1 and D2 medium spiny neurons in cocaine reward. Proc Natl Acad Sci U S A 113:2726-31
Wang, Tianyuan; Santos, Janine H; Feng, Jian et al. (2016) A Novel Analytical Strategy to Identify Fusion Transcripts between Repetitive Elements and Protein Coding-Exons Using RNA-Seq. PLoS One 11:e0159028
Graziane, Nicholas M; Sun, Shichao; Wright, William J et al. (2016) Opposing mechanisms mediate morphine- and cocaine-induced generation of silent synapses. Nat Neurosci 19:915-25
Khibnik, Lena A; Beaumont, Michael; Doyle, Marie et al. (2016) Stress and Cocaine Trigger Divergent and Cell Type-Specific Regulation of Synaptic Transmission at Single Spines in Nucleus Accumbens. Biol Psychiatry 79:898-905
Kiraly, Drew D; Walker, Deena M; Calipari, Erin S et al. (2016) Alterations of the Host Microbiome Affect Behavioral Responses to Cocaine. Sci Rep 6:35455
Egervari, Gabor; Landry, Joseph; Callens, James et al. (2016) Striatal H3K27 Acetylation Linked to Glutamatergic Gene Dysregulation in Human Heroin Abusers Holds Promise as Therapeutic Target. Biol Psychiatry :

Showing the most recent 10 out of 267 publications