It is well established that DARPP-32 is a key integrator of striatal signaling in physiological conditions as well as in the context of psychostimulants. Beside dopamine, various neurotransmitters such as glutamate act on and modify DARPP-32 downstream signaling. Our studies have demonstrated the importance of multiple signaling pathways converging on DARPP-32 in the action of drugs of abuse, and recently we have developed state-of-the-art technologies proving that these signaling events are specifically regulated in different sub-populations of medium spiny neurons (MSNs) that differentially express Dl and D2 types of dopamine receptor. Our ongoing research will focus on studies of mGluRS, an important GPCR invovled in glutamate-dependent DARPP-32 regulation, and two kinases, CKI and CK2. CKI is a crucial player in the mGluR5/DARPP-32 pathway and CK2 is essential for regulation of DARPP-32 nuclear trafficking. We have generated novel mouse lines for each of the three proposed Aims that will allow us not only to study the impact of psychostimulants in vivo but also to evaluate the relative importance of D1- and D2-MSNs in these phenomena. To address these questions we propose three Aims in Project 2 of the Program Project Grant.
In Aim I we will study the role of the newly discovered mGluRS regulator Norbin in the actions of psychostimulants.
In Aim II we will study the role of CK1 in the mGluRS/DARPP-32 pathway in vivo. We will also further charcterize the CK16 over expressing mice that present some behavioral features that ressembles ADHD. We will further address differences observed between Dl and D2 receptor pathways.
In Aim III we will study the role of CK2 in the actions of psychostimulants, in both Dl and D2-MSNs using specific KO strategies. Results from this Project will complement the other two Projects of this Program Project grant. In addition we will also carry out a number of collaborative studies with Projects 1 and 3, including studies involving spine morphology with Project 1 and phosphoproteomic studies and behavioral studies with Project 3.

Public Health Relevance

The proposed project will shed light on crucial regulatory steps that are strongly involved in striatal signaling and in the action of drugs of abuse. This work will increase our knowledge of psychostimulant-induced dysfunctions and might, by opening new possible therapeutic avenues, contribute to the development of small molecules that could counteract partially or totally the perverse effects of psychostimulants.

National Institute of Health (NIH)
National Institute on Drug Abuse (NIDA)
Research Program Projects (P01)
Project #
Application #
Study Section
Special Emphasis Panel (ZRG1-MDCN-G)
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Rockefeller University
New York
United States
Zip Code
Colangelo, Christopher M; Ivosev, Gordana; Chung, Lisa et al. (2015) Development of a highly automated and multiplexed targeted proteome pipeline and assay for 112 rat brain synaptic proteins. Proteomics 15:1202-14
Wan, Xun; Torregrossa, Mary M; Sanchez, Hayde et al. (2014) Activation of exchange protein activated by cAMP in the rat basolateral amygdala impairs reconsolidation of a memory associated with self-administered cocaine. PLoS One 9:e107359
Kitchen, Robert R; Rozowsky, Joel S; Gerstein, Mark B et al. (2014) Decoding neuroproteomics: integrating the genome, translatome and functional anatomy. Nat Neurosci 17:1491-9
Arango-Lievano, Margarita; Schwarz, Justin T; Vernov, Mary et al. (2014) Cell-type specific expression of p11 controls cocaine reward. Biol Psychiatry 76:794-801
Dupré, Aude; Daldello, Enrico M; Nairn, Angus C et al. (2014) Phosphorylation of ARPP19 by protein kinase A prevents meiosis resumption in Xenopus oocytes. Nat Commun 5:3318
Meyer, Douglas A; Torres-Altoro, Melissa I; Tan, Zhenjun et al. (2014) Ischemic stroke injury is mediated by aberrant Cdk5. J Neurosci 34:8259-67
Magupalli, Venkat G; Mochida, Sumiko; Yan, Jin et al. (2013) Ca2+-independent activation of Ca2+/calmodulin-dependent protein kinase II bound to the C-terminal domain of CaV2.1 calcium channels. J Biol Chem 288:4637-48
Oh, Yong-Seok; Gao, Pu; Lee, Ko-Woon et al. (2013) SMARCA3, a chromatin-remodeling factor, is required for p11-dependent antidepressant action. Cell 152:831-43
Yamagata, Yoko; Kaneko, Koichi; Kase, Daisuke et al. (2013) Regulation of ERK1/2 mitogen-activated protein kinase by NMDA-receptor-induced seizure activity in cortical slices. Brain Res 1507:1-10
Rebholz, Heike; Zhou, Mingming; Nairn, Angus C et al. (2013) Selective knockout of the casein kinase 2 in d1 medium spiny neurons controls dopaminergic function. Biol Psychiatry 74:113-21

Showing the most recent 10 out of 179 publications