A group of brain nuclei collectively known as the basal ganglia are involved in learning to perform complex behavioral tasks. A major instructive signal for learning these tasks is the brain chemical dopamine, which is thought to signal important environmental cues related to rewards or positive outcomes, thereby allowing the brain to more effectively learn how to perform tasks that lead to reward. Unfortunately, addictive drugs hijack this system by directly causing the release of dopamine, thereby signaling a false """"""""reward"""""""" signal, and leading to reinforcement ofthe behaviors associated with drug administration itself. By understanding how dopamine causes plastic changes in the brain that lead to addictive behaviors, we hope to be able to develop treatments for this devastating neurological condition. This project takes a unique and novel approach to this problem.
In Aim 1, we apply new tools and methods that allow for highly selective stimulation of defined cell populations. We will perform electrophysiological recordings in brain slices taken from one ofthe least understood parts ofthe basal ganglia: the substantia nigra pars reticulata (SNr). The SNr is one ofthe two major output regions ofthe basal ganglia, and is therefore in a privileged position to control the signals that leave the basal ganglia and regulate cortical and subcortical motor control systems. Although early studies demonstrated its sensitivity to dopamine signaling and its importance in animal paradigms of addiction, little progress has been made, due to technical difficulties in disentangling the function ofthe complex brain circuits that are integrated in this region.
In Aim 2, we will develop and exploit a new paradigm for addiction that involves optogenetic self-stimulation ofthe direct pathway circuit. This behavior is highly reinforcing and increases in frequency over many days, and may share key mechanistic features with psychostimulant addiction. We will dissect the mechanisms ofthis behavioral reinforcement in the SNr, and then in Aim 3, we will perform in vivo recordings to determine how direct pathway strength is modified during the acquisition of a highly-reinforced behavior involving direct pathway activation.

Public Health Relevance

Drug addiction and other compulsive behaviors represent major public health problems that impact not only those addicted, but society as a whole. Here, we utilize cutting edge technology to dissect the function of brain areas involved in addiction, with the goal of developing new therapies to treat these maladaptive behaviors.

Agency
National Institute of Health (NIH)
Institute
National Institute on Drug Abuse (NIDA)
Type
Research Program Projects (P01)
Project #
5P01DA010154-17
Application #
8507690
Study Section
Special Emphasis Panel (ZRG1-MDCN-F)
Project Start
Project End
Budget Start
2013-05-01
Budget End
2014-04-30
Support Year
17
Fiscal Year
2013
Total Cost
$239,092
Indirect Cost
Name
University of California San Francisco
Department
Type
DUNS #
094878337
City
San Francisco
State
CA
Country
United States
Zip Code
94143
Uchida, Yasunori; Rutaganira, Florentine U; Jullie, Damien et al. (2016) Endosomal phosphatidylinositol 3-kinase is essential for canonical GPCR signaling. Mol Pharmacol :
Gupta, Vijay; Bhandari, Deepali; Leyme, Anthony et al. (2016) GIV/Girdin activates Gαi and inhibits Gαs via the same motif. Proc Natl Acad Sci U S A 113:E5721-30
Sulzer, David; Cragg, Stephanie J; Rice, Margaret E (2016) Striatal dopamine neurotransmission: regulation of release and uptake. Basal Ganglia 6:123-148
Eichel, K; Jullié, D; von Zastrow, M (2016) β-Arrestin drives MAP kinase signalling from clathrin-coated structures after GPCR dissociation. Nat Cell Biol 18:303-10
Avegno, Elizabeth M; Salling, Michael C; Borgkvist, Anders et al. (2016) Voluntary adolescent drinking enhances excitation by low levels of alcohol in a subset of dopaminergic neurons in the ventral tegmental area. Neuropharmacology 110:386-95
Tsvetanova, Nikoleta G; Trester-Zedlitz, Michelle; Newton, Billy W et al. (2016) GPCR endocytosis confers uniformity in responses to chemically distinct ligands. Mol Pharmacol :
Tian, Xufan; Irannejad, Roshanak; Bowman, Shanna L et al. (2016) The α-Arrestin ARRDC3 Regulates the Endosomal Residence Time and Intracellular Signaling of the β2-Adrenergic Receptor. J Biol Chem 291:14510-25
Varandas, Katherine C; Irannejad, Roshanak; von Zastrow, Mark (2016) Retromer Endosome Exit Domains Serve Multiple Trafficking Destinations and Regulate Local G Protein Activation by GPCRs. Curr Biol 26:3129-3142
Roseberry, Thomas K; Lee, A Moses; Lalive, Arnaud L et al. (2016) Cell-Type-Specific Control of Brainstem Locomotor Circuits by Basal Ganglia. Cell 164:526-37
Freyberg, Zachary; Sonders, Mark S; Aguilar, Jenny I et al. (2016) Mechanisms of amphetamine action illuminated through optical monitoring of dopamine synaptic vesicles in Drosophila brain. Nat Commun 7:10652

Showing the most recent 10 out of 103 publications