The importance of ventral midbrain (VM) dopamine (DA) synaptic activity is clear from their roles in motor, learning and behavioral disorders, including drug dependence. These synapses contribute to the normal execution of motor sequences, learning, and habit formation learning by mediating short- and long-terhi plasticity at two levels in the basal ganglia, at axon terminals in the striatum, and from somatodendritic areas Together, those actions determine which medium spiny neurons (MSN) synapses transfer activity to substantia nigra reticulara (SNr) nigrothalamic neurons that integrate basal ganglia circuitry and drive the cortex to control behavior, DA released by synaptic vesicle exocytosis from axon terminals acts at multiple pre- and postsynaptic sites that together alter striatonigral dii-ecf and striatopallidal indirect MSN activity. Transmission from sonnatodendritic regions is poorly understood, in part because they lack conventional synaptic vesicles but rather presunned neurosecretory organelles that express VMAT2. Somatodendritic DA release also appears to haVe multiple targets that control nigrothalamic activity, but little is known currently about such synapses. Our hypothesis is that somatodendritic DA release enables frequency-dependent selection of synaptic terminals ofthe striatonigral direct pathway. Our |ab has developed opticaltechniques to measure activity at individual synaptic terminals, including, fluorescent false neurotransmitters (FFNs) that characterize DA release and the synaptic vesicle fusion probe FM 1-43 to striatonigral synapses. Our preliminary evidence indicates that somatodendritic DA release selects striatonigral synapses via presynaptic D1 receptors in a frequency-dependent manner, an effect not detectable using classical methods. We will work with the Edwards lab using mutant mice that Should lack somatodendhtic DA release, the Krietzer lab who have developed means to selectively activate DA, striatonigral and pallidonigral pathways, and the von: Zastrow lab, who are exploring means to interfere with Dl signalling on the MSN neurons, including by amphetamine (AMPH),

Public Health Relevance

The role of dopamine neurotransmission in drug dependence is well established, but the precise means by Which it alters synapses leading to this disorder is unclear, particularly in the midbrain where dopamine release is required but is released using different molecular mechanisms than in most of the rest of the central nervous system. We wiN determine how this release occurs and its relevant synaptic effects.

National Institute of Health (NIH)
National Institute on Drug Abuse (NIDA)
Research Program Projects (P01)
Project #
Application #
Study Section
Special Emphasis Panel (ZRG1-MDCN-F)
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of California San Francisco
San Francisco
United States
Zip Code
Mosharov, Eugene V; Borgkvist, Anders; Sulzer, David (2015) Presynaptic effects of levodopa and their possible role in dyskinesia. Mov Disord 30:45-53
Choy, Regina Wai-Yan; Park, Minjong; Temkin, Paul et al. (2014) Retromer mediates a discrete route of local membrane delivery to dendrites. Neuron 82:55-62
Tang, Guomei; Gudsnuk, Kathryn; Kuo, Sheng-Han et al. (2014) Loss of mTOR-dependent macroautophagy causes autistic-like synaptic pruning deficits. Neuron 83:1131-43
Tatti, Roberta; Bhaukaurally, Khaleel; Gschwend, Olivier et al. (2014) A population of glomerular glutamatergic neurons controls sensory information transfer in the mouse olfactory bulb. Nat Commun 5:3791
Cebrián, Carolina; Zucca, Fabio A; Mauri, Pierluigi et al. (2014) MHC-I expression renders catecholaminergic neurons susceptible to T-cell-mediated degeneration. Nat Commun 5:3633
Federici, Mauro; Latagliata, Emanuele Claudio; Ledonne, Ada et al. (2014) Paradoxical abatement of striatal dopaminergic transmission by cocaine and methylphenidate. J Biol Chem 289:264-74
Irannejad, Roshanak; Kotowski, Sarah J; von Zastrow, Mark (2014) Investigating signaling consequences of GPCR trafficking in the endocytic pathway. Methods Enzymol 535:403-18
Tsvetanova, Nikoleta G; von Zastrow, Mark (2014) Spatial encoding of cyclic AMP signaling specificity by GPCR endocytosis. Nat Chem Biol 10:1061-5
Di Fiore, Pier Paolo; von Zastrow, Mark (2014) Endocytosis, signaling, and beyond. Cold Spring Harb Perspect Biol 6:
Karpowicz Jr, Richard J; Dunn, Matthew; Sulzer, David et al. (2013) APP+, a fluorescent analogue of the neurotoxin MPP+, is a marker of catecholamine neurons in brain tissue, but not a fluorescent false neurotransmitter. ACS Chem Neurosci 4:858-69

Showing the most recent 10 out of 59 publications