The mammalian fatty acid amides and fatty acyl glycerol have been directly linked to the regulation of pain thresholds, body temperature, sleep cycles, appetite, and higher-level cognitive processes such as memory and learning. Nonetheless, how these lipids influence nervous system function is poorly understood. While some of these molecules trigger the central cannabinoid receptors CB1 and CB2, other members of this class lack described molecular targets. The enzyme fatty acid amide hydrolase (FAAH) controls the levels of fatty acid amides in vivo, setting the baseline function of their various corresponding physiologies. We have determined the three dimensional structure of this integral membrane protein in complex with novel inhibitors, and we are now prepared to expand these structure determination efforts to extend our knowledge of the mechanisms of action of this important enzyme. The studies described in this application (Project 2 of the Program Project) aim to determine higher resolution FAAH structures, as well as structures of human FAAH, apo-FAAH, and FAAH-inhibitor/product complexes. Furthermore, we will begin studies to solve the structure of the monoacylglycerol lipase which degrades neuronal 2-arachidonyl glycerol to complement our understanding of endocannabinoid metabolism. Information accrued from our studies will not only enlighten our understanding of these key enzymes but will also serve as a guide for the development of agents designed to intersect the endocannabinoid system in vivo, possibly to therapeutic benefit.

National Institute of Health (NIH)
National Institute on Drug Abuse (NIDA)
Research Program Projects (P01)
Project #
Application #
Study Section
Human Development Research Subcommittee (NIDA)
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Scripps Research Institute
La Jolla
United States
Zip Code
Gamage, Thomas F; Ignatowska-Jankowska, Bogna M; Wiley, Jenny L et al. (2014) In-vivo pharmacological evaluation of the CB1-receptor allosteric modulator Org-27569. Behav Pharmacol 25:182-5
Dainese, Enrico; De Fabritiis, Gianni; Sabatucci, Annalaura et al. (2014) Membrane lipids are key modulators of the endocannabinoid-hydrolase FAAH. Biochem J 457:463-72
Ignatowska-Jankowska, B M; Ghosh, S; Crowe, M S et al. (2014) In vivo characterization of the highly selective monoacylglycerol lipase inhibitor KML29: antinociceptive activity without cannabimimetic side effects. Br J Pharmacol 171:1392-407
Otrubova, Katerina; Cravatt, Benjamin F; Boger, Dale L (2014) Design, synthesis, and characterization of ?-ketoheterocycles that additionally target the cytosolic port Cys269 of fatty acid amide hydrolase. J Med Chem 57:1079-89
Grim, Travis W; Ghosh, Sudeshna; Hsu, Ku-Lung et al. (2014) Combined inhibition of FAAH and COX produces enhanced anti-allodynic effects in mouse neuropathic and inflammatory pain models. Pharmacol Biochem Behav 124:405-11
Schlosburg, Joel E; Kinsey, Steven G; Ignatowska-Jankowska, Bogna et al. (2014) Prolonged monoacylglycerol lipase blockade causes equivalent cannabinoid receptor type 1 receptor-mediated adaptations in fatty acid amide hydrolase wild-type and knockout mice. J Pharmacol Exp Ther 350:196-204
Naydenov, Alipi V; Horne, Eric A; Cheah, Christine S et al. (2014) ABHD6 blockade exerts antiepileptic activity in PTZ-induced seizures and in spontaneous seizures in R6/2 mice. Neuron 83:361-71
Buczynski, Matthew W; Polis, Ilham Y; Parsons, Loren H (2013) The volitional nature of nicotine exposure alters anandamide and oleoylethanolamide levels in the ventral tegmental area. Neuropsychopharmacology 38:574-84
Chang, Jae Won; Cognetta 3rd, Armand B; Niphakis, Micah J et al. (2013) Proteome-wide reactivity profiling identifies diverse carbamate chemotypes tuned for serine hydrolase inhibition. ACS Chem Biol 8:1590-9
Kinsey, Steven G; Wise, Laura E; Ramesh, Divya et al. (2013) Repeated low-dose administration of the monoacylglycerol lipase inhibitor JZL184 retains cannabinoid receptor type 1-mediated antinociceptive and gastroprotective effects. J Pharmacol Exp Ther 345:492-501

Showing the most recent 10 out of 111 publications