We propose to develop a deeper understanding of the structural basis for the behavior/function of the opioid receptor subfamily of G protein-coupled receptors (GPCR). Structures of all three opioid receptors: ? -opioid receptor (MOR), ? -opioid receptor (KOR), ?-opioid receptor (DOR), and the opioid-like nociceptin/orphanin FQ opioid-like receptor (NOP), have recently been solved. This breakthrough created a unique opportunity to pursue a comprehensive understanding of ligand recognition and selectivity, as well as structural mechanisms of opioid receptor activation and biased signaling. Attaining this goal will require solving a large number of structures of ligand-receptor complexes similar to what is routinely done in structure based drug design targeting soluble proteins. This is now possible since our GPCR Structure Determination Pipeline (GSDP) and our newly developed GPCR Protein Fusion Toolchest has enabled large-scale structure determination of ligand-receptor complexes. The GSDP has been used by us in the successful structure determination of 14 different human GPCRs and their complexes, including two new receptors in activated states with bound agonist. In this proposed study, we will conduct similar efforts toward the crystallization and structural determination of ligand-receptor complexes of all of the receptors in the opioid family using agonists, antagonists, inverse agonists, and allosteric modulators. Criteria for opioid receptor and signaling pathway selectivity will be approached by attempting structure determination of several complexes of functional near-wild type constructs and rationally designed mutants. Within three specific aims we will solve several ligand-receptor structures on (1) KOR, (2) NOP, and (3) MOR and DOR.

Public Health Relevance

Structure-based drug design relies on experimentally determined three-dimensional structure of target proteins of which availability for GPCR targets had been quite limited until five years ago. With rapid progress in technologies and experimental approaches, we are now able to generate a large number of structures that can then be used to design new therapeutics targeting opioid receptors that are selective and with reduced side effects.

National Institute of Health (NIH)
National Institute on Drug Abuse (NIDA)
Research Program Projects (P01)
Project #
Application #
Study Section
Special Emphasis Panel (ZRG1-BCMB-S (40))
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Scripps Research Institute
La Jolla
United States
Zip Code
Manglik, Aashish; Lin, Henry; Aryal, Dipendra K et al. (2016) Structure-based discovery of opioid analgesics with reduced side effects. Nature 537:185-190
Bruchas, Michael R; Roth, Bryan L (2016) New Technologies for Elucidating Opioid Receptor Function. Trends Pharmacol Sci 37:279-89
White, Thomas A; Barty, Anton; Liu, Wei et al. (2016) Serial femtosecond crystallography datasets from G protein-coupled receptors. Sci Data 3:160057
Roth, Bryan L (2016) DREADDs for Neuroscientists. Neuron 89:683-94
Kuhar, Jamie Rose; Bedini, Andrea; Melief, Erica J et al. (2015) Mu opioid receptor stimulation activates c-Jun N-terminal kinase 2 by distinct arrestin-dependent and independent mechanisms. Cell Signal 27:1799-806
Vardy, Eyal; Robinson, J Elliott; Li, Chia et al. (2015) A New DREADD Facilitates the Multiplexed Chemogenetic Interrogation of Behavior. Neuron 86:936-46
O'Connor, Casey; White, Kate L; Doncescu, Nathalie et al. (2015) NMR structure and dynamics of the agonist dynorphin peptide bound to the human kappa opioid receptor. Proc Natl Acad Sci U S A 112:11852-7
Vardy, Eyal; Sassano, Maria F; Rennekamp, Andrew J et al. (2015) Single Amino Acid Variation Underlies Species-Specific Sensitivity to Amphibian Skin-Derived Opioid-like Peptides. Chem Biol 22:764-75
Isberg, Vignir; de Graaf, Chris; Bortolato, Andrea et al. (2015) Generic GPCR residue numbers - aligning topology maps while minding the gaps. Trends Pharmacol Sci 36:22-31
Robinson, J Elliott; Vardy, Eyal; DiBerto, Jeffrey F et al. (2015) Receptor Reserve Moderates Mesolimbic Responses to Opioids in a Humanized Mouse Model of the OPRM1 A118G Polymorphism. Neuropsychopharmacology 40:2614-22

Showing the most recent 10 out of 15 publications