Chemical and analytical services are now widely available to the biomedical community. This accentuates the obligation of the Core to remain cost-effective to its users and to the NIH alike. While offering peptides of substantially higher purity, the Core's charges have remained comparable on a per-residue basis to the advertised commercial products. Especially important is the favorable cost differential for more complex peptides such as the long-acting "M"-PTH analogs and b-amino acid modifications needed under Project I. Savings are also being realized through our capability to perform syntheses on different scales, ranging from .002-.005 to 0.5 mmol, enabling costs to be matched with required quantity. The assets of the facility extend well beyond price considerations alone, however. The Core's staff has worked together for many years, and (starting with Drs. Potts and Keutmann) represents experience reaching back to the earliest days of protein sequencing and synthesis. Mr. Khatri brings broad expertise in contemporary synthetic and analytical methodology, having led us for over 20 years through the transition from t-BOC to Fmoc chemistry, the ongoing adoption of multiple-synthesis instrumentation, and innovative use of specialized protecting groups and coupling methodologies. Important among the "value-added" benefits of an in-house Core facility is its ability to develop methodologies, not readily available on a commercial basis, in response to investigator needs--such as the long-acting pharmacokinetic analogs under Project I as noted above. This, and the very nature of peptide and protein chemistry, calls for extensive consultative interactions between investigators and Core staff. Updates on progress are available at any stage of the synthesis or analytical process--something not possible when ordering, catalog-style, from an outside vendor. Further, because of the Program Project's commitment of salaries and equipment to the Core, Program Project users receive a priority that assures faster service than is typically available commercially, especially for the longer and more complex peptides often required by Program investigators.

National Institute of Health (NIH)
National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK)
Research Program Projects (P01)
Project #
Application #
Study Section
Special Emphasis Panel (ZDK1-GRB-J (O1))
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Massachusetts General Hospital
United States
Zip Code
Wein, Marc N; Spatz, Jordan; Nishimori, Shigeki et al. (2015) HDAC5 controls MEF2C-driven sclerostin expression in osteocytes. J Bone Miner Res 30:400-11
Manolagas, Stavros C; Kronenberg, Henry M (2014) Reproducibility of results in preclinical studies: a perspective from the bone field. J Bone Miner Res 29:2131-40
Javaheri, Behzad; Stern, Amber Rath; Lara, Nuria et al. (2014) Deletion of a single *-catenin allele in osteocytes abolishes the bone anabolic response to loading. J Bone Miner Res 29:705-15
Portale, Anthony A; Wolf, Myles; Juppner, Harald et al. (2014) Disordered FGF23 and mineral metabolism in children with CKD. Clin J Am Soc Nephrol 9:344-53
Gidon, Alexandre; Al-Bataineh, Mohammad M; Jean-Alphonse, Frederic G et al. (2014) Endosomal GPCR signaling turned off by negative feedback actions of PKA and v-ATPase. Nat Chem Biol 10:707-9
Dasgupta, Debayan; Wee, Mark J; Reyes, Monica et al. (2014) Mutations in SLC34A3/NPT2c are associated with kidney stones and nephrocalcinosis. J Am Soc Nephrol 25:2366-75
Vilardaga, Jean-Pierre; Jean-Alphonse, Frederic G; Gardella, Thomas J (2014) Endosomal generation of cAMP in GPCR signaling. Nat Chem Biol 10:700-6
Nistala, Harikiran; Mäkitie, Outi; Jüppner, Harald (2014) Caffey disease: new perspectives on old questions. Bone 60:246-51
Guo, Jun; Song, Lige; Liu, Minlin et al. (2013) Activation of a non-cAMP/PKA signaling pathway downstream of the PTH/PTHrP receptor is essential for a sustained hypophosphatemic response to PTH infusion in male mice. Endocrinology 154:1680-9
Wesseling-Perry, Katherine; Pereira, Renata C; Tsai, Eileen et al. (2013) FGF23 and mineral metabolism in the early post-renal transplantation period. Pediatr Nephrol 28:2207-15

Showing the most recent 10 out of 166 publications