The overall goal of this Program Project is to understand the mechanisms underlying renal fluid and electrolyte homeostasis and renal epithelial function in health and the processes that modulate these mechanisms in disease. A broad spectrum of techniques will be used to address a continuum of problems ranging from the molecular characterization of individual transport-related proteins to the contribution of these proteins to integrated renal function at the level of the intact tubule, the organ, and the whole animal. Our strategy to pursue these themes successfully will include close collaboration on interrelated research projects;sharing of expertise, concepts and techniques by Directors of the five individual Projects and the four research Cores;joint use of the research core facilities and single administrative core. The research projects comprise a broad range of experimental preparations including ion/solute transport proteins, transport regulatory proteins, transfected mammalian cells in tissue culture, isolated cell membrane vesicles, Xenopus oocyte expression system, isolated kidney cells and tubules, and whole kidney in vivo. We shall use a wide range of methods including molecular cloning and mutagenesis, functional cDNA expression, generation and use of transgenic mice, immune-cytochemistry, phosphopeptide enrichment coupled to mass spectral identification of phosphorylation sites, confocal microscopy, fluorometric assays of cell ion activities, whole cell clamp and patch- and giant patch-clamp techniques, in vivo and in vitro perfusion of defined tubule segments, and clearance studies. Each of the projects and cores is concerned with the central themes of the Program: to provide important new insights into individual transport proteins that play a role in renal electrolyte homeostasis, to elucidate the regulation of these transport-related proteins, to elucidate the cellular pathways involved in epithelial polarity that is an absolute prerequisite for vectorial solute and fluid transport, and to assess the relative contributions of these proteins to tubule and organ function under conditions of normal and deranged electrolyte and energy metabolism. Our strategy to pursue these themes successfully will include close collaboration on interrelated research projects;sharing of expertise, concepts and techniques by Program investigators;and joint use of core facilities.

National Institute of Health (NIH)
National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK)
Research Program Projects (P01)
Project #
Application #
Study Section
Special Emphasis Panel (ZDK1-GRB-W (M2))
Program Officer
Ketchum, Christian J
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Yale University
Schools of Medicine
New Haven
United States
Zip Code
Mohler, Kyle; Aerni, Hans-Rudolf; Gassaway, Brandon et al. (2017) MS-READ: Quantitative measurement of amino acid incorporation. Biochim Biophys Acta 1861:3081-3088
Castañeda-Bueno, Maria; Arroyo, Juan Pablo; Zhang, Junhui et al. (2017) Phosphorylation by PKC and PKA regulate the kinase activity and downstream signaling of WNK4. Proc Natl Acad Sci U S A 114:E879-E886
Han, Jaeyong; Lee, Seung Hun; Giebisch, Gerhard et al. (2016) Potassium Channelopathies and Gastrointestinal Ulceration. Gut Liver 10:881-889
Stoops, Emily H; Hull, Michael; Caplan, Michael J (2016) Newly synthesized and recycling pools of the apical protein gp135 do not occupy the same compartments. Traffic 17:1272-1285
Ferdaus, Mohammed Z; Barber, Karl W; López-Cayuqueo, Karen I et al. (2016) SPAK and OSR1 play essential roles in potassium homeostasis through actions on the distal convoluted tubule. J Physiol 594:4945-66
Ishizawa, Kenichi; Xu, Ning; Loffing, Johannes et al. (2016) Potassium depletion stimulates Na-Cl cotransporter via phosphorylation and inactivation of the ubiquitin ligase Kelch-like 3. Biochem Biophys Res Commun 480:745-751
Lin, Dao-Hong; Yue, Peng; Yarborough 3rd, Orlando et al. (2015) Src-family protein tyrosine kinase phosphorylates WNK4 and modulates its inhibitory effect on KCNJ1 (ROMK). Proc Natl Acad Sci U S A 112:4495-500
Chen, Tiane; Kocinsky, Hetal S; Cha, Boyoung et al. (2015) Cyclic GMP kinase II (cGKII) inhibits NHE3 by altering its trafficking and phosphorylating NHE3 at three required sites: identification of a multifunctional phosphorylation site. J Biol Chem 290:1952-65
Pirman, Natasha L; Barber, Karl W; Aerni, Hans R et al. (2015) A flexible codon in genomically recoded Escherichia coli permits programmable protein phosphorylation. Nat Commun 6:8130
Farr, Glen A; Hull, Michael; Stoops, Emily H et al. (2015) Dual pulse-chase microscopy reveals early divergence in the biosynthetic trafficking of the Na,K-ATPase and E-cadherin. Mol Biol Cell 26:4401-11

Showing the most recent 10 out of 290 publications