The overall goal of this Program Project Group is to understand the mechanisms underlying renal fluid, electrolyte and macromolecule transport. Kinase and phosphatases are essential regulators of this process and thus, by extension, their target phosphorylation sites are important for mechanistic insight. This core will add value to the project group by bringing new capabilities and expertise in the identification and characterization of phosphorylation sites in proteins and proteomes. Dr. Jesse Rinehart will assume the role as the Phosphoproteomics Core Director and will bring expertise in phosphorylation mapping, quantitative proteomics, and phosphoprotein synthesis to the Program Project Group. Dr. Rinehart recently developed a new technology which enables site-specific incorporation of phosphoserine into proteins. This technology enables the synthesis of physiologically relevant phosphoproteins in an E. coli strain with an expanded genetic code. This unique technology and a recently published next- generation phosphoserine technology will be uniquely available to this Program Project Group. The combinations of established phosphoproteomics technologies and novel phosphoprotein synthesis technologies will enable a unique approach to validation and further exploration of the mechanisms of protein phosphorylation. The core will be an excellent learning environment and bring trainees from the Program Project Groups in close contact with proteomics experts in the Rinehart lab. This training environment will provide access to state-of-the-art technology to the individual members of the Project Group. Dr. Rinehart's research interests are closely aligned with the aims of this project group and, in addition to the technology, the unique lab environment is value added to the Program Project Group.

Public Health Relevance

The purpose of this Phosphoproteomics Core is to provide a fundamental connection to the understanding of protein phosphorylation and the mechanisms that coordinate electrolyte homeostasis. This knowledge is essential and will benefit human health.

Agency
National Institute of Health (NIH)
Institute
National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK)
Type
Research Program Projects (P01)
Project #
2P01DK017433-41A1
Application #
8742440
Study Section
Special Emphasis Panel (ZDK1-GRB-9 (M6))
Project Start
Project End
Budget Start
2014-08-01
Budget End
2015-07-31
Support Year
41
Fiscal Year
2014
Total Cost
$164,097
Indirect Cost
$62,147
Name
Yale University
Department
Type
DUNS #
043207562
City
New Haven
State
CT
Country
United States
Zip Code
06520
Monette, Michelle Y; Somasekharan, Suma; Forbush, Biff (2014) Molecular motions involved in Na-K-Cl cotransporter-mediated ion transport and transporter activation revealed by internal cross-linking between transmembrane domains 10 and 11/12. J Biol Chem 289:7569-79
Merrick, David; Bertuccio, Claudia A; Chapin, Hannah C et al. (2014) Polycystin-1 cleavage and the regulation of transcriptional pathways. Pediatr Nephrol 29:505-11
Stoops, Emily H; Caplan, Michael J (2014) Trafficking to the apical and basolateral membranes in polarized epithelial cells. J Am Soc Nephrol 25:1375-86
Stoops, Emily H; Farr, Glen A; Hull, Michael et al. (2014) SNAP-tag to monitor trafficking of membrane proteins in polarized epithelial cells. Methods Mol Biol 1174:171-82
Shibata, Shigeru; Arroyo, Juan Pablo; Castañeda-Bueno, María et al. (2014) Angiotensin II signaling via protein kinase C phosphorylates Kelch-like 3, preventing WNK4 degradation. Proc Natl Acad Sci U S A 111:15556-61
Hayashi, Hisayoshi; Tamura, Atsushi; Krishnan, Devishree et al. (2013) Ezrin is required for the functional regulation of the epithelial sodium proton exchanger, NHE3. PLoS One 8:e55623
Shibata, Shigeru; Rinehart, Jesse; Zhang, Junhui et al. (2013) Mineralocorticoid receptor phosphorylation regulates ligand binding and renal response to volume depletion and hyperkalemia. Cell Metab 18:660-71
Shibata, Shigeru; Zhang, Junhui; Puthumana, Jeremy et al. (2013) Kelch-like 3 and Cullin 3 regulate electrolyte homeostasis via ubiquitination and degradation of WNK4. Proc Natl Acad Sci U S A 110:7838-43
Jouret, François; Wu, Jingshing; Hull, Michael et al. (2013) Activation of the Ca²+-sensing receptor induces deposition of tight junction components to the epithelial cell plasma membrane. J Cell Sci 126:5132-42
Wells, Erika K; Yarborough 3rd, OrLando; Lifton, Richard P et al. (2013) Epithelial morphogenesis of MDCK cells in three-dimensional collagen culture is modulated by interleukin-8. Am J Physiol Cell Physiol 304:C966-75

Showing the most recent 10 out of 271 publications