Hypertension is a major public health problem, affecting 1 billion people and contributing to death from heart attacks and strokes, the #1 and #3 causes of death in the US. We have used genetic and genomic approaches to identify genes and pathways that underlie this trait, and have identified renal salt handling as a principal determinant of human blood pressure. This work has unexpectedly identified new layers of physiologic regulation that are involeved in orchestrating the activities of diverse electrolyte flux pathways. These new mechanisms reveal that the kidney explicitly regulates the balance between renal salt reabsorption and K+ secretion via regulated activity of WNK kinases, whose level and activity is regulated by volume depletion. We have recently identified two new genes that play key roles in this pathway- these encode KLHL3 and CUL3, partners in an ubiquitin ligase complex. Mutation of either results in a similar phenotype to that resulting from WNK mutations. We have shown that this ubiquitin ligase targets WNKs for degradation and is regulated by phosphorylation. We are defining the biochemistry of this signaling pathway, its regulation by changes in volume and potassium homeostasis, and will produce new models that recapitulate the human disease, allowing further determination of the mechanisms by which this pathway imparts its effects. As part of this effort, we have made an unexpected discovery that has implications both for hypertension and also for the broader nuclear hormone receptor field. We have identified a novel phoshorylation site in the mineralocorticoid receptor (MR) that regulates the ability of MR to bind ligand. This site is exclusively phosphorylated in renal intercalated cells, and is modulated in opposite directions by volume depletion and hyperkalemia;dephosphorylation by AII signaling is WNK4-dependent and increases expression of electrolyte flux pathways in intercalated cells that increase electroneutral salt reabsorption. We will identify the kinase mediating this phosphorylation and elucidate the responsible signaling pathway. We are making a mouse model with inducible loss of phosphorylation in intercalated cells, which will reveal the role of this pathway in blood pressure and electrolyte homestasis.

Public Health Relevance

Hypertension is a major public health problem in the US and world-wide. Understanding its detailed pathogenesis provides the best opportunity for development of new strategies for prevention and treatment. The work herein is investigating previously unrecognized pathways involved in renal salt homeostasis, a major determinant of day to day blood pressure homeostasis in humans.

Agency
National Institute of Health (NIH)
Institute
National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK)
Type
Research Program Projects (P01)
Project #
2P01DK017433-41A1
Application #
8742443
Study Section
Special Emphasis Panel (ZDK1-GRB-9 (M6))
Project Start
Project End
Budget Start
2014-09-18
Budget End
2015-06-30
Support Year
41
Fiscal Year
2014
Total Cost
$318,353
Indirect Cost
$127,150
Name
Yale University
Department
Type
DUNS #
043207562
City
New Haven
State
CT
Country
United States
Zip Code
06520
Kim, Jun-Mo; Xu, Shuhua; Guo, Xiaoyun et al. (2018) Urinary bladder hypertrophy characteristic of male ROMK Bartter's mice does not occur in female mice. Am J Physiol Regul Integr Comp Physiol 314:R334-R341
Gassaway, Brandon M; Petersen, Max C; Surovtseva, Yulia V et al. (2018) PKC? contributes to lipid-induced insulin resistance through cross talk with p70S6K and through previously unknown regulators of insulin signaling. Proc Natl Acad Sci U S A 115:E8996-E9005
Gilder, Allison L; Chapin, Hannah C; Padovano, Valeria et al. (2018) Newly synthesized polycystin-1 takes different trafficking pathways to the apical and ciliary membranes. Traffic 19:933-945
Barber, Karl W; Muir, Paul; Szeligowski, Richard V et al. (2018) Encoding human serine phosphopeptides in bacteria for proteome-wide identification of phosphorylation-dependent interactions. Nat Biotechnol 36:638-644
Scholl, Ute I; Stölting, Gabriel; Schewe, Julia et al. (2018) CLCN2 chloride channel mutations in familial hyperaldosteronism type II. Nat Genet 50:349-354
Barber, Karl W; Rinehart, Jesse (2018) The ABCs of PTMs. Nat Chem Biol 14:188-192
Barber, Karl W; Miller, Chad J; Jun, Jay W et al. (2018) Kinase Substrate Profiling Using a Proteome-wide Serine-Oriented Human Peptide Library. Biochemistry 57:4717-4725
Li, Jing; Hatano, Ryo; Xu, Shuhua et al. (2017) Gender difference in kidney electrolyte transport. I. Role of AT1a receptor in thiazide-sensitive Na+-Cl- cotransporter activity and expression in male and female mice. Am J Physiol Renal Physiol 313:F505-F513
Inoue, Kazunori; Balkin, Daniel M; Liu, Lijuan et al. (2017) Kidney Tubular Ablation of Ocrl/Inpp5b Phenocopies Lowe Syndrome Tubulopathy. J Am Soc Nephrol 28:1399-1407
Castañeda-Bueno, Maria; Arroyo, Juan Pablo; Zhang, Junhui et al. (2017) Phosphorylation by PKC and PKA regulate the kinase activity and downstream signaling of WNK4. Proc Natl Acad Sci U S A 114:E879-E886

Showing the most recent 10 out of 303 publications