These studies will provide new insights into the integration of innate immune activation pathways required for the recognition of microbiota at mucosal surfaces, a thematic goal shared between Project 1 and Project 4. In collaboration with Project 3, GEF-Hl was identified as an unexpected essential component of innate immune regulation. GEF-Hl functioned as part of Rip2 containing signaling complexes and was required for the induction of tyrosine phosphorylation of Rip2 essential for NF-KB activation. We will determine key mechanisms that allow GEF-H1 to mediated innate immune activation by regulating receptor-interacting protein (RIP) family kinases and non-receptor tyrosine kinases and examine the protein domains and posttranslational modifications of GEF-H1 responsible for the control of innate immune responses to microbial factors. New preliminary data obtained in work with Project 2, demonstrate that GEF-Hl further controls the activation of inflammatory pathways by the corticotropin receptors CRHR1 and CRHR2. In collaboration with Project 2, we will define the mechanisms by which GEF-H1 mediates neuropeptide dependent regulation of innate immune responses. In collaboration with Project 5 and supported by the isograft and xenograft model systems of Core B, we will determine whether inhibition of GEF-H1 effectors is a promising strategy for the promotion of mucosal recovery from intestinal inflammation.

Public Health Relevance

A more precise definition of the mechanisms of microbial recognition pathways regulating innate first line immune defenses is required for the understanding of the basis of inflammatory bowel diseases. We will define key mechanisms that allow a newly discovered mediator of host defenses to regulate mucosal inflammation and intestinal tissue repair.

National Institute of Health (NIH)
National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK)
Research Program Projects (P01)
Project #
Application #
Study Section
Special Emphasis Panel (ZDK1-GRB-8)
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Massachusetts General Hospital
United States
Zip Code
Walker, W Allan (2017) The importance of appropriate initial bacterial colonization of the intestine in newborn, child, and adult health. Pediatr Res 82:387-395
Saslowsky, David E; Thiagarajah, Jay R; McCormick, Beth A et al. (2016) Microbial sphingomyelinase induces RhoA-mediated reorganization of the apical brush border membrane and is protective against invasion. Mol Biol Cell 27:1120-30
Giannogonas, Panagiotis; Apostolou, Athanasia; Manousopoulou, Antigoni et al. (2016) Identification of a novel interaction between corticotropin releasing hormone (Crh) and macroautophagy. Sci Rep 6:23342
Mercado-Lubo, Regino; Zhang, Yuanwei; Zhao, Liang et al. (2016) A Salmonella nanoparticle mimic overcomes multidrug resistance in tumours. Nat Commun 7:12225
Hoffman, Jill M; Baritaki, Stavroula; Ruiz, Jonathan J et al. (2016) Corticotropin-Releasing Hormone Receptor 2 Signaling Promotes Mucosal Repair Responses after Colitis. Am J Pathol 186:134-44
Gregory, Katherine E; Samuel, Buck S; Houghteling, Pearl et al. (2016) Influence of maternal breast milk ingestion on acquisition of the intestinal microbiome in preterm infants. Microbiome 4:68
Ganguli, Kriston; Collado, Maria C; Rautava, Jaana et al. (2015) Lactobacillus rhamnosus GG and its SpaC pilus adhesin modulate inflammatory responsiveness and TLR-related gene expression in the fetal human gut. Pediatr Res 77:528-35
Houghteling, Pearl D; Walker, W Allan (2015) Why is initial bacterial colonization of the intestine important to infants' and children's health? J Pediatr Gastroenterol Nutr 60:294-307
Rodriguez, Jorge A; Huerta-Yepez, Sara; Law, Ivy Ka Man et al. (2015) Diminished expression of CRHR2 in human colon cancer promotes tumor growth and EMT via persistent IL-6/Stat3 signaling. Cell Mol Gastroenterol Hepatol 1:610-630
Hallstrom, Kelly N; Srikanth, C V; Agbor, Terence A et al. (2015) PERP, a host tetraspanning membrane protein, is required for Salmonella-induced inflammation. Cell Microbiol 17:843-59

Showing the most recent 10 out of 266 publications