Plasma membrane proteins anchored via a glycophospholipid are of critical importance for a number of metabolic and homeostatic functions. Moreover, their modulation may result in the ability of cells to escape immune recognition. The present proposal is concerned with three such proteins: decay accelerating factor (DAF), acetylcholinesterase, and Thy-1. The proposal is highly inter-disciplinary--both from a conceptual and from a technical point of view--and exploits chemical, cell biological, biochemical, molecular biological and immunological approaches. The extensive investigation of the structure of the anchor of acetylcholinesterase makes use of human red cells; the studies of Thy-1 focus on a family of five mouse lymphoma mutants which synthesize Thy-1 but fail to express it on the cell surface, apparently due to an inability to synthesize its anchor; the studies of DAF concern fluids, tissues and cultured cells of control individuals and of individuals suffering from paroxysmal nocturnal hemoglobinuria (PNH). In this disease, cell surface DAF (and acetylcholinesterase) are grossly deficient, although precursor species of DAF are synthesized. The underlying in PNH may, therefore, be related to those of the Thy-1 negative mutants. The unifying theme of the proposed research is the structure, biosynthesis and function(s) of glycophospholipid anchors.

Agency
National Institute of Health (NIH)
Institute
National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK)
Type
Research Program Projects (P01)
Project #
1P01DK038181-01A1
Application #
3095467
Study Section
Diabetes and Digestive and Kidney Diseases Special Grants Review Committee (DDK)
Project Start
1987-09-01
Project End
1992-08-31
Budget Start
1987-09-01
Budget End
1988-08-31
Support Year
1
Fiscal Year
1987
Total Cost
Indirect Cost
Name
Case Western Reserve University
Department
Type
Schools of Medicine
DUNS #
077758407
City
Cleveland
State
OH
Country
United States
Zip Code
44106
Chen, R; Knez, J J; Merrick, W C et al. (2001) Comparative efficiencies of C-terminal signals of native glycophosphatidylinositol (GPI)-anchored proproteins in conferring GPI-anchoring. J Cell Biochem 84:68-83
Wongkajornsilp, A; Sevlever, D; Rosenberry, T L (2001) Metabolism of exogenous sn-1-alkyl-sn-2-lyso-glucosaminyl-phosphatidylinositol in HeLa D cells: accumulation of glucosaminyl(acyl)phosphatidylinositol in a metabolically inert compartment. Biochem J 359:305-13
Premkumar, D R; Fukuoka, Y; Sevlever, D et al. (2001) Properties of exogenously added GPI-anchored proteins following their incorporation into cells. J Cell Biochem 82:234-45
Sevlever, D; Pickett, S; Mann, K J et al. (1999) Glycosylphosphatidylinositol-anchor intermediates associate with triton-insoluble membranes in subcellular compartments that include the endoplasmic reticulum. Biochem J 343 Pt 3:627-35
Chen, A; Meyerson, H J; Salvekar, A et al. (1998) Non-glycosylated human B7-1(CD80) retains the capacity to bind its counter-receptors. FEBS Lett 428:127-34
Chen, R; Walter, E I; Parker, G et al. (1998) Mammalian glycophosphatidylinositol anchor transfer to proteins and posttransfer deacylation. Proc Natl Acad Sci U S A 95:9512-7
Kraus, D; Medof, M E; Mold, C (1998) Complementary recognition of alternative pathway activators by decay-accelerating factor and factor H. Infect Immun 66:399-405
Sevlever, D; Schiemann, D; Guidubaldi, J et al. (1997) Accumulation of glucosaminyl(acyl)phosphatidylinositol in an S3 HeLa subline expressing normal dolicholphosphomannose synthase activity. Biochem J 321 ( Pt 3):837-44
Yu, J; Nagarajan, S; Knez, J J et al. (1997) The affected gene underlying the class K glycosylphosphatidylinositol (GPI) surface protein defect codes for the GPI transamidase. Proc Natl Acad Sci U S A 94:12580-5
Meyerson, H J; Huang, J H; Fayen, J D et al. (1996) Functional dissociation of CD8 alpha's Ig homologue and connecting peptide domains. J Immunol 156:574-84

Showing the most recent 10 out of 71 publications