The kidney plays a key role in the control of body fluid volume and composition, and tubular and/or hemodynamic dysfunction are common features of diseases such as hypertension and diabetes. The renal P450 arachidonic acid (AA) monooxygenase biosynthesizes hydroxy- and epoxy-AA derivatives that are known to modulate tubular transport and vascular reactivity. Animal models of P450 gene dysfunction confirmed the physiological importance of these enzymes, characterized their pathophysiological roles, and provided insights into the mechanism of action of their metabolites. Studies of the pathophysiological roles of human P450s identified associations between P450 gene variants with hypertension, the progression of renal disease, and with components of metabolic syndrome. This application proposes to build upon these studies and to address: a) mechanisms by which the P450-eicosanoids regulate renal tubular transport and vascular reactivity, b) the role of P450s in human hypertension and renal complications of diabetes, and c) the molecular basis of these pathophysiological roles. To achieve these goals, we developed a multidisciplinary approach for studies of P450-isoform specific phenotypes at the cellular, organ and whole animal levels, the analysis of associations between alterations in human P450 gene structure/expression and disease, and for clinical studies of their metabolic and functional consequences. Cyp2c and Cyp4a knockout mice will be used to study gene-dependent changes in: a) renal EET and/or 20-HETE synthase expression, b) tubular transport and/or vascular reactivity, and c) systemic blood pressure and the progression of renal disease. Associations between CYP2C8/2C9 or CYP4A11 genotypes with blood pressure, insulin sensitivity, and urine and plasma EET and 20-HETE levels will be explored to define pathophysiological correlations between variant alleles, AA epoxidation/hydroxylation, and individual responses to changes in dietary salt intake, the administration of diuretics, or peroxisomal proliferator activated receptor (alpha) ligands. Our long term goals are to provide a molecular understanding of role(s) of P450 eicosanoids in renal physiological, their mechanism and site of action, and relevance to human disease. These are needed for the development of meaningful approaches for: a) the unequivocal definition of human pathophysiological significance, and b) future pharmacological targeting, and clinical diagnosis and intervention.

Public Health Relevance

Hypertension and diabetes are leading causes of cardiovascular, cerebral, and renal disease morbidity and mortality, and their prevalence and multiple medical and socio-economic consequences make them a major health challenge. It is expected that the definition of a role for kidney P450s in human hypertension and diabetes will lead to new approaches for the early diagnosis and treatment of these diseases, and contribute to prevent their devastating consequences.

National Institute of Health (NIH)
National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK)
Research Program Projects (P01)
Project #
Application #
Study Section
Special Emphasis Panel (ZDK1-GRB-S (M3))
Program Officer
Rys-Sikora, Krystyna E
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Vanderbilt University Medical Center
Internal Medicine/Medicine
Schools of Medicine
United States
Zip Code
Gangadhariah, Mahesha H; Luther, James M; Garcia, Victor et al. (2015) Hypertension is a major contributor to 20-hydroxyeicosatetraenoic acid-mediated kidney injury in diabetic nephropathy. J Am Soc Nephrol 26:597-610
Zeng, Fenghua; Miyazawa, Tomoki; Kloepfer, Lance A et al. (2014) Deletion of ErbB4 accelerates polycystic kidney disease progression in cpk mice. Kidney Int 86:538-47
Luther, James M; Byrne, Loretta M; Yu, Chang et al. (2014) Dietary sodium restriction decreases insulin secretion without affecting insulin sensitivity in humans. J Clin Endocrinol Metab 99:E1895-902
Bajpai, Prachi; Srinivasan, Satish; Ghosh, Jyotirmoy et al. (2014) Targeting of splice variants of human cytochrome P450 2C8 (CYP2C8) to mitochondria and their role in arachidonic acid metabolism and respiratory dysfunction. J Biol Chem 289:29614-30
Hye Khan, Md Abdul; Pavlov, Tengis S; Christain, Sarah V et al. (2014) Epoxyeicosatrienoic acid analogue lowers blood pressure through vasodilation and sodium channel inhibition. Clin Sci (Lond) 127:463-74
Keller, Julia; Ellieva, Alexandra; Ma, Dengke K et al. (2014) CYP-13A12 of the nematode Caenorhabditis elegans is a PUFA-epoxygenase involved in behavioural response to reoxygenation. Biochem J 464:61-71
Chen, Li; Ackerman, Rachel; Saleh, Mohamed et al. (2014) 20-HETE regulates the angiogenic functions of human endothelial progenitor cells and contributes to angiogenesis in vivo. J Pharmacol Exp Ther 348:442-51
Wang, Wen-Hui; Zhang, Chengbiao; Lin, Dao-Hong et al. (2014) Cyp2c44 epoxygenase in the collecting duct is essential for the high K+ intake-induced antihypertensive effect. Am J Physiol Renal Physiol 307:F453-60
Nithipatikom, Kasem; Endsley, Michael P; Pfeiffer, Adam W et al. (2014) A novel activity of microsomal epoxide hydrolase: metabolism of the endocannabinoid 2-arachidonoylglycerol. J Lipid Res 55:2093-102
Falck, John R; Koduru, Sreenivasulu Reddy; Mohapatra, Seetaram et al. (2014) 14,15-Epoxyeicosa-5,8,11-trienoic Acid (14,15-EET) surrogates: carboxylate modifications. J Med Chem 57:6965-72

Showing the most recent 10 out of 260 publications