The role of the P450 arachidonic acid (AA) monooxygenase as a major pathway for the metabolism of endogenous AA is now well established, as is the functional relevance of its products and of the enzymes responsible for their biosynthesis. Studies with purified proteins, genetic models of hypertension, or mice carrying disrupted P450 genes have identified members of the CYP2C and CYP4A gene subfamily of P450s as the predominant, and functionally relevant AA epoxygenase and omega hydroxylases in the rat, mouse, and human kidney, respectively. Synthetic chemistry, protein chemistry, and recombinant DNA techniques provide now efficient and routine access to most P450 eicosanoids, specific inhibitors, EET and HETE analogs, antagonists and agonist, purified P450 isoforms, P450 antibodies, cDNAs, as well as plasmid and viral vectors coding for CYP2C AA epoxygenase and CYP 4A omega-hydroxylases. In support of projects 1- 5 and, to optimize productive interactions and resources utilization. Core B will continue to apply established methods of eicosanoid extraction, purification, HPLC analysis, UPLC/MS/MS characterization, protein purification, and recombinant DNA manipulation, for: a) the detection and quantification of eicosanoids in biological samples, b) the biochemical characterization of metabolites generated by cellular, subcellular, or purified protein incubates, c) the storage, purification, and documentation of synthetic standards, specific inhibitors, agonist, and antagonists, d) the storage and documentation of immunospecific probes, e) the partial purification of recombinant enzymes, and f) the amplification, purification and documentation of cDNAs probes. The centralization of these routine tasks in Core B eliminates unnecessary and costly duplications, improves reproducibility, and provide projects 1-5 with efficient and timely access to synthetic standards, biospecific probes and state of the art bioanalytical techniques.

Public Health Relevance

Core B serves important roles in the optimization of resources, as well as a vehicle for the productive exchange of ideas and experiences. As the depository of methods and experimental tools, the Core plays an important function in facilitating interactions and promoting effort coordination among the Program Project scientists.

National Institute of Health (NIH)
National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK)
Research Program Projects (P01)
Project #
Application #
Study Section
Special Emphasis Panel (ZDK1-GRB-S)
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Vanderbilt University Medical Center
United States
Zip Code
Gangadhariah, Mahesha H; Luther, James M; Garcia, Victor et al. (2015) Hypertension is a major contributor to 20-hydroxyeicosatetraenoic acid-mediated kidney injury in diabetic nephropathy. J Am Soc Nephrol 26:597-610
Zeng, Fenghua; Miyazawa, Tomoki; Kloepfer, Lance A et al. (2014) Deletion of ErbB4 accelerates polycystic kidney disease progression in cpk mice. Kidney Int 86:538-47
Luther, James M; Byrne, Loretta M; Yu, Chang et al. (2014) Dietary sodium restriction decreases insulin secretion without affecting insulin sensitivity in humans. J Clin Endocrinol Metab 99:E1895-902
Bajpai, Prachi; Srinivasan, Satish; Ghosh, Jyotirmoy et al. (2014) Targeting of splice variants of human cytochrome P450 2C8 (CYP2C8) to mitochondria and their role in arachidonic acid metabolism and respiratory dysfunction. J Biol Chem 289:29614-30
Hye Khan, Md Abdul; Pavlov, Tengis S; Christain, Sarah V et al. (2014) Epoxyeicosatrienoic acid analogue lowers blood pressure through vasodilation and sodium channel inhibition. Clin Sci (Lond) 127:463-74
Keller, Julia; Ellieva, Alexandra; Ma, Dengke K et al. (2014) CYP-13A12 of the nematode Caenorhabditis elegans is a PUFA-epoxygenase involved in behavioural response to reoxygenation. Biochem J 464:61-71
Chen, Li; Ackerman, Rachel; Saleh, Mohamed et al. (2014) 20-HETE regulates the angiogenic functions of human endothelial progenitor cells and contributes to angiogenesis in vivo. J Pharmacol Exp Ther 348:442-51
Wang, Wen-Hui; Zhang, Chengbiao; Lin, Dao-Hong et al. (2014) Cyp2c44 epoxygenase in the collecting duct is essential for the high K+ intake-induced antihypertensive effect. Am J Physiol Renal Physiol 307:F453-60
Nithipatikom, Kasem; Endsley, Michael P; Pfeiffer, Adam W et al. (2014) A novel activity of microsomal epoxide hydrolase: metabolism of the endocannabinoid 2-arachidonoylglycerol. J Lipid Res 55:2093-102
Falck, John R; Koduru, Sreenivasulu Reddy; Mohapatra, Seetaram et al. (2014) 14,15-Epoxyeicosa-5,8,11-trienoic Acid (14,15-EET) surrogates: carboxylate modifications. J Med Chem 57:6965-72

Showing the most recent 10 out of 260 publications