This Program Project seeks to understand basic cellular mechanisms responsible for gastrointestinal (Gl) motility. Knowledge of the basic structures and mechanisms of the neuromuscular apparatus of the Gl tract provides insights about how normal Gl motility is accomplished and why dysmotilities develop in the abnormal Gl tract. The long range benefit of this information will be to provide the basis for novel methods for treatment of abnormal Gl transit and to improve the quality of life for human patients. The neuromuscular apparatus of the Gl tract is extremely complex and function depends upon integrated activity of several types of cells. We have designed 4 projects that will explore various aspects of enteric neurotransmission, pacemaker activity, and smooth muscle function. Project 1, using a novel murine genetic model in which interstitial cells of Cajal (ICC) express a fluorescent protein, will seek to understand the mechanism of pacemaker activity and how pacemaker function is affected in diabetes and ICC hyperplasia. Project 3 will seek to understand regulation of smooth muscle excitability and how the activity of non-selective cation conductances contributes to normal and abnormal responses of muscle cells. Project 4 will investigate the release, function and metabolism of a novel neurotransmitter substance that is important for regulating colonic motor function. Project 5 will study the plasticity of ICC and how and why these cells are lost in type II diabetes. This project will also seek to develop techniques for restoring networks of ICC after damage. These primary investigations will be supported by 3 Core facilities designed to provide administration and informatics support and cutting-edge techniques, including cell and organotypic cultures, construction of transgenic animals, cytometry and fluorescence activated cell sorting, analysis of molecular expression, and a variety of morphological techniques. For the purpose of translating our findings from animal models to the function of the human Gl tract, many of our experiments will be conducted on tissues and cells of human patients that have been recovered from surgery for carcinomas. The investigative team is highly synergistic and collaborative, and the PPG has a long track-record of productivity and novel discovery

Public Health Relevance

This Program Project seeks to understand the basic motor components of the gastrointestinal (Gl) tract that are responsible for orderly processing of food and wastes. Coordinated Gl movements are a basic necessity of life, yet millions of American patients suffer from diseases of poorly regulated Gl transit. At present there are inadequate therapies available to relieve the suffering and, in some cases life threatening conditions, endured bv these patients.

Agency
National Institute of Health (NIH)
Institute
National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK)
Type
Research Program Projects (P01)
Project #
5P01DK041315-24
Application #
8280405
Study Section
Special Emphasis Panel (ZDK1-GRB-9 (J1))
Program Officer
Hamilton, Frank A
Project Start
1997-05-01
Project End
2014-04-30
Budget Start
2012-05-01
Budget End
2013-04-30
Support Year
24
Fiscal Year
2012
Total Cost
$1,295,593
Indirect Cost
$373,463
Name
University of Nevada Reno
Department
Physiology
Type
Schools of Medicine
DUNS #
146515460
City
Reno
State
NV
Country
United States
Zip Code
89557
Durnin, Leonie; Kwok, Benjamin; Kukadia, Priya et al. (2018) An ex vivo bladder model with detrusor smooth muscle removed to analyse biologically active mediators released from the suburothelium. J Physiol :
Shi, Junchao; Ko, Eun-A; Sanders, Kenton M et al. (2018) SPORTS1.0: A Tool for Annotating and Profiling Non-coding RNAs Optimized for rRNA- and tRNA-derived Small RNAs. Genomics Proteomics Bioinformatics 16:144-151
Drumm, Bernard T; Sung, Tae S; Zheng, Haifeng et al. (2018) The effects of mitochondrial inhibitors on Ca2+ signalling and electrical conductances required for pacemaking in interstitial cells of Cajal in the mouse small intestine. Cell Calcium 72:1-17
Baker, Salah A; Drumm, Bernard T; Skowronek, Karolina E et al. (2018) Excitatory Neuronal Responses of Ca2+ Transients in Interstitial Cells of Cajal in the Small Intestine. eNeuro 5:
Lee, Moon Young; Park, Chanjae; Ha, Se Eun et al. (2017) Serum response factor regulates smooth muscle contractility via myotonic dystrophy protein kinases and L-type calcium channels. PLoS One 12:e0171262
Drumm, Bernard T; Hennig, Grant W; Battersby, Matthew J et al. (2017) Clustering of Ca2+ transients in interstitial cells of Cajal defines slow wave duration. J Gen Physiol 149:703-725
Smith, Terence Keith; Koh, Sang Don (2017) A model of the enteric neural circuitry underlying the generation of rhythmic motor patterns in the colon: the role of serotonin. Am J Physiol Gastrointest Liver Physiol 312:G1-G14
Beckett, Elizabeth A H; Sanders, Kenton M; Ward, Sean M (2017) Inhibitory responses mediated by vagal nerve stimulation are diminished in stomachs of mice with reduced intramuscular interstitial cells of Cajal. Sci Rep 7:44759
Durnin, Leonie; Lees, Andrea; Manzoor, Sheerien et al. (2017) Loss of nitric oxide-mediated inhibition of purine neurotransmitter release in the colon in the absence of interstitial cells of Cajal. Am J Physiol Gastrointest Liver Physiol 313:G419-G433
Cobine, C A; Hannah, E E; Zhu, M H et al. (2017) ANO1 in intramuscular interstitial cells of Cajal plays a key role in the generation of slow waves and tone in the internal anal sphincter. J Physiol 595:2021-2041

Showing the most recent 10 out of 365 publications