Innovative Strategies for Improved Outcomes in Nephrolithiasis. The main focus of this Program Project Grant is to develop and refine ultrasound-based technologies and treatment protocols to improve the noninvasive removal of stones from the kidney with the goal of improving patient outcomes. In this effort, we will refine new technology that uses ultrasonic propulsion (UP) to push stones and residual stone fragments out of the renal pelvicalyceal system and on to the uretero-pelvic junction for passage down the ureter. The UP system is built upon a commercially available ultrasound (US) platform that we have configured to deliver a suite of unique stone-specific imaging modalities (S-mode) specifically tailored to detect stones (even very small, <1 mm, stone fragments), determine fragment size, detect cavitation indicative of the acoustic shielding that interferes with stone breakage, and localize the cavitation in tissue that signals the on- set of tissue injury. We will use UP and S-mode imaging to improve the efficiency of shock wave lithotripsy (SWL) by dispersing fragments that create shielding and by enabling precise determination of the stone breakage endpoint so that patients are not needlessly over-treated. We will also pursue the development, refinement, and validation of a novel noninvasive method that uses focused, low-frequency pulsed US (burst wave lithotripsy, BWL) to reduce stones to small, clinically insignificant particles with minimal injury to surrounding tissue. Over-treatment by SWL is linked to increased adverse effects and is the basis for FDA limits on SW-dose, limits that often prevent treatment with a dose sufficient to render the patient stone free. We will build upon our discovery of SWL treatment strategies that protect the kidney from injury to devise treatment protocols that dramatically exceed current FDA limits for SW dose, yet are entirely safe. That is, we will demonstrate that single session treatment limits for SWL can be exceeded without causing added injury, thus allowing treatment with enough SWs to fully comminute a large stone burden or eliminate stones otherwise difficult to break. Consistent with our goal of improving treatment outcomes for stone patients, we will conduct a multicenter prospective clinical trial to determine if the removal of 'subclinical'attached stones by ureterorenoscopy (assisted by UP) will forestall stone recurrence, thereby improving long-term outcomes.

Public Health Relevance

Stone disease is an increasingly significant concern to the public health, and new treatment strategies are needed to improve patient outcomes: nearly 10% of people in the United States will suffer kidney stones in their lifetimes, and over the past 15 years, the occurrence of stone disease has increased by more than 15%. More than half of these individuals will be recurrent stone formers. Annually, kidney stones account for 3 million visits to U.S. healthcare providers, and costs associated with the diagnosis and treatment of stones, along with the estimated loss of work for patients with the disease, are in excess of $5 billion annually within the United States.

Agency
National Institute of Health (NIH)
Type
Research Program Projects (P01)
Project #
2P01DK043881-20
Application #
8740041
Study Section
Special Emphasis Panel (ZDK1)
Program Officer
Kirkali, Ziya
Project Start
Project End
Budget Start
Budget End
Support Year
20
Fiscal Year
2014
Total Cost
Indirect Cost
Name
University of Washington
Department
Physics
Type
Earth Sciences/Resources
DUNS #
City
Seattle
State
WA
Country
United States
Zip Code
98195
Kelsey, Rebecca (2016) Stones: Expelling stones with ultrasonic propulsion. Nat Rev Urol 13:7
Harper, Jonathan D; Cunitz, Bryan W; Dunmire, Barbrina et al. (2016) First in Human Clinical Trial of Ultrasonic Propulsion of Kidney Stones. J Urol 195:956-64
Lingeman, James E (2016) The Era of Shock Wave Lithotripsy is Over: No. J Urol 195:16-7
Handa, Rajash K; Johnson, Cynthia D; Connors, Bret A et al. (2016) Percutaneous Renal Access: Surgical Factors Involved in the Acute Reduction of Renal Function. J Endourol 30:178-83
Harrogate, Suzanne R; Yick, L M Shirley; Williams Jr, James C et al. (2016) Quantification of the Range of Motion of Kidney and Ureteral Stones During Shockwave Lithotripsy in Conscious Patients. J Endourol 30:406-10
Matlaga, Brian R (2016) Editorial Comment. J Urol 195:176-7
Handa, Rajash K; Lingeman, James E; Bledsoe, Sharon B et al. (2016) Intraluminal measurement of papillary duct urine pH, in vivo: a pilot study in the swine kidney. Urolithiasis 44:211-7
Dy, Geolani W; Hsi, Ryan S; Holt, Sarah K et al. (2016) National Trends in Secondary Procedures Following Pediatric Pyeloplasty. J Urol 195:1209-14
Dunmire, Barbrina; Harper, Jonathan D; Cunitz, Bryan W et al. (2016) Use of the Acoustic Shadow Width to Determine Kidney Stone Size with Ultrasound. J Urol 195:171-7
May, Philip C; Bailey, Michael R; Harper, Jonathan D (2016) Ultrasonic propulsion of kidney stones. Curr Opin Urol 26:264-70

Showing the most recent 10 out of 204 publications