The Multiscale Imaging Core (Core B) will provide advanced structure and function capabilities. services and technical assistance to investigators who need to characterize how tissues. cells, organelles and molecules respond to kinase and phosphatase signaling. The leaders of Core B are leading experts in the development and use of labeling and indicator technology for physiological detection. quantitative imaging, and monitoring of biological processes. They are also recognized authorities on mitochondrial physiology and structure, key to the research goals of all four projects. A common theme among all projects is that perturbation of the precise balance between protein phosphorylation, catalyzed by protein kinases, and protein dephosphorylation, catalyzed by protein phosphatases, can lead to deregulation of insulin homeostasis. Deregulation of this balance can suppress signaling pathways, resulting in insulin resistance, a defining characteristic of type 2 diabetes mellitus and metabolic syndrome. The multi-faceted capabilities of Core B will assist researchers to address the underlying molecular mechanisms driving the assembly and dissociation of protein scaffolds during insulin resistance/insufficiency and are designed to provide novel insights into the organization of signaling networks that influence diabetes and metabolic syndrome. The Core Services Aims are: 1. Enable broad access to fluorescent probes, reporters, and indicators being developed for imaging biochemical and physiological functions of tissues and cells to investigate models of signaling. 2. Enable the probing of biological systems through long-duration, live-cell imaging, large-area imaging of cells and tissues, and correlated 3D light and electron microscopic mapping of probes. 3. Provide real-time, 4D imaging for the localization, monitoring, and characterizations of molecular and supramolecular complexes in vitro, in vivo and in situ. 4. Perform electron microscopy and tomography to characterize mitochondrial structural alterations upon scaffolding complex association/dissociation and component knockdown or knockout. 5. Assay the alteration of kinases, anchoring and scaffolding proteins on the bioenergetic function of mitochondria using state-of-the-art measurements on cells and isolated mitochondria. 6. Provide the supporting computational, visualization, and informatics technologies for functional and multidisciplinary analyses.

Public Health Relevance

The Multiscale Imaging Core provides structural and functional technologies to aid researchers to understand the molecular mechanisms of insulin resistance, essential for pharmacological intervention of the pathophysiologies associated with diabetes and metabolic syndrome. The probes provided will help to characterize the anchoring proteins for kinases and phosphatases and their cargo that mediate protein

Agency
National Institute of Health (NIH)
Type
Research Program Projects (P01)
Project #
5P01DK054441-15
Application #
8640921
Study Section
Special Emphasis Panel (ZDK1)
Project Start
Project End
Budget Start
Budget End
Support Year
15
Fiscal Year
2014
Total Cost
Indirect Cost
Name
University of California San Diego
Department
Type
DUNS #
City
La Jolla
State
CA
Country
United States
Zip Code
92093
Cone, Angela C; Cavin, Gabriel; Ambrosi, Cinzia et al. (2014) Protein kinase C?-mediated phosphorylation of Connexin43 gap junction channels causes movement within gap junctions followed by vesicle internalization and protein degradation. J Biol Chem 289:8781-98
Kunkel, Maya T; Newton, Alexandra C (2014) Imaging kinase activity at protein scaffolds. Methods Mol Biol 1071:129-37
Suh, Jae Myoung; Jonker, Johan W; Ahmadian, Maryam et al. (2014) Endocrinization of FGF1 produces a neomorphic and potent insulin sensitizer. Nature 513:436-9
McNelis, Joanne C; Olefsky, Jerrold M (2014) Macrophages, immunity, and metabolic disease. Immunity 41:36-48
Lopez, Ana D; Kayali, Ayse G; Hayek, Alberto et al. (2014) Isolation, culture, and imaging of human fetal pancreatic cell clusters. J Vis Exp :
Dowding, J M; Song, W; Bossy, K et al. (2014) Cerium oxide nanoparticles protect against A?-induced mitochondrial fragmentation and neuronal cell death. Cell Death Differ 21:1622-32
Matt, Ulrich; Sharif, Omar; Martins, Rui et al. (2013) WAVE1 mediates suppression of phagocytosis by phospholipid-derived DAMPs. J Clin Invest 123:3014-24
Barkho, Sulyman; Pierce, Levi C T; McGlone, Maria L et al. (2013) Distal loop flexibility of a regulatory domain modulates dynamics and activity of C-terminal SRC kinase (csk). PLoS Comput Biol 9:e1003188
Wu-Zhang, Alyssa X; Newton, Alexandra C (2013) Protein kinase C pharmacology: refining the toolbox. Biochem J 452:195-209
Wiley, Sandra E; Andreyev, Alexander Y; Divakaruni, Ajit S et al. (2013) Wolfram Syndrome protein, Miner1, regulates sulphydryl redox status, the unfolded protein response, and Ca2+ homeostasis. EMBO Mol Med 5:904-18

Showing the most recent 10 out of 142 publications