The hypothesis to be tested is that HIVAN is a disease in which HIV-1 infection of renal epithelium is required but not sufficient to induce the disease. Genetic factors responsible for susceptibility and progression are likely to be downstream of the viral entry event. To approach this, we propose to identify the QTL on mouse chr03 underlying the strain susceptibility of the murine model to develop HIVAN in the presence of an HIV-1 transgene, to identify additional modifying loci from other strains, and, in combination with Project #3, define candidate genes differentially expressed in response to HIV infection that are also located within mapped intervals. Furthermore, we hypothesize that pathogenesis derives from direct renal infection, expression of viral genes (specifically nef), induced expression of host genes, and interactions of nefwith host signaling pathways. Project #2 will define the relationship of HIV-1 infection of renal epithelium with the generation of phenotypic HIVAN, in contrast to other non-HIVAN but AIDS associated renal diseases. In addition, Project #2 will explore the compartments that harbor HIV-1, support its replication and genetic divergence, and consider the role that nef plays in pathogenesis. In addition, Project #2 will determine the impact of poymorphisms of the nef gene in phenotypic expression of HIVAN. Project #4 will explore the mechanisms by which nef activates intracellular signaling pathways in podocytes that lead to disease. Projects #2 and #4 will together address epitopes of nef that lead to a pathological signal cascade. Finally, Project #3 will address the role of aberrant host gene expression of podocytes and tubular epithelial cells in response to HIV infection. Together with Project #1, Project #3 will define potential candidate genes that define host susceptibiliity to HIVAN as well as define pathways of renal pathogenesis. Results from these studies will provide improved understanding of HIVAN pathogenesis, AIDS pathogenesis, appropriate strategies for therapy, and insights into renal disease susceptibility of Blacks in general.

National Institute of Health (NIH)
National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK)
Research Program Projects (P01)
Project #
Application #
Study Section
Special Emphasis Panel (ZDK1-GRB-D (J1))
Program Officer
Rankin, Tracy L
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Baylor College of Medicine
Internal Medicine/Medicine
Schools of Medicine
United States
Zip Code
Xiao, Wenzhen; Fan, Ying; Wang, Niansong et al. (2016) Knockdown of RTN1A attenuates ER stress and kidney injury in albumin overload-induced nephropathy. Am J Physiol Renal Physiol 310:F409-15
Lucas, Gregory M; Atta, Mohamed G; Fine, Derek M et al. (2016) HIV, Cocaine Use, and Hepatitis C Virus: A Triad of Nontraditional Risk Factors for Subclinical Cardiovascular Disease. Arterioscler Thromb Vasc Biol 36:2100-7
Lucas, Gregory M; Atta, Mohamed G; Zook, Katie et al. (2016) Factors associated with iohexol-based glomerular filtration rate slope over 36 months in HIV-negative and HIV-positive individuals. AIDS 30:619-26
Zhong, Fang; Mallipattu, Sandeep K; Estrada, Chelsea et al. (2016) Reduced Krüppel-Like Factor 2 Aggravates Glomerular Endothelial Cell Injury and Kidney Disease in Mice with Unilateral Nephrectomy. Am J Pathol 186:2021-31
Zhong, Fang; Wang, Weiming; Lee, Kyung et al. (2016) Role of C/EBP-α in Adriamycin-induced podocyte injury. Sci Rep 6:33520
Fu, Jia; Wei, Chengguo; Lee, Kyung et al. (2016) Comparison of Glomerular and Podocyte mRNA Profiles in Streptozotocin-Induced Diabetes. J Am Soc Nephrol 27:1006-14
Chen, Ping; Yi, Zhengzi; Zhang, Weijia et al. (2016) HIV infection-induced transcriptional program in renal tubular epithelial cells activates a CXCR2-driven CD4+ T-cell chemotactic response. AIDS 30:1877-88
Yacoub, Rabi; Nadkarni, Girish N; Weikum, Damian et al. (2016) Elevations in Serum Creatinine With Tenofovir-Based HIV Pre-Exposure Prophylaxis: A Meta-Analysis of Randomized Placebo-Controlled Trials. J Acquir Immune Defic Syndr 71:e115-8
Zhong, Fang; Chen, Habing; Wei, Chengguo et al. (2015) Reduced Krüppel-like factor 2 expression may aggravate the endothelial injury of diabetic nephropathy. Kidney Int 87:382-95
Razzak Chaudhary, Sarah; Workeneh, Biruh T; Montez-Rath, Maria E et al. (2015) Trends in the outcomes of end-stage renal disease secondary to human immunodeficiency virus-associated nephropathy. Nephrol Dial Transplant 30:1734-40

Showing the most recent 10 out of 93 publications