The surgical, metabolic and anatomical studies we performed during the last funding period have characterized the histopathological and mineral composition in seven groups of SF: CaOx ICSF, patients with Stones due to intestinal bypass surgery for obesity, CaP ICSF, dRTA with phosphate stones, cystine, PHT with phosphate stones, and ileostomy to test the hypothesis that interstitial plaque, arise in unique anatomical regions of the kidney, and that their formation is conditioned by specific SF pathophysiologies. We were amazed at the finding, in that, each group of SF had a unique histopathologic pattern of crystal deposition with all interstitial sites of crystalline material composed of hydroxyapatite, and intratubular sites composed of HA with a mixture of cystine, CaOx or a mixture of Na acid urate and ammonium acid urate.
Aim 1 will determine mineral and ultrastructural characteristics of the plug-overgrowth-stone complex in stone formers with tuubular plugging.
Aim 2 outlines a new set of studies that will determine if all kidney stones attached to sites of Randall's plaque have apatite overgrowths. These studies will advance the studies on the plaque-tissue interface already accomplished in this funding cycle.
Aim 3 outlines a new series of studies to determine if normal tubules adjacent to plugged, scared tubules acquire (the field effect) cellular changes including hyaluronan expression mediated by cytokines that could lead to an acidification defect.
Aim 4 will use cryo-electron microscopy with X-ray microanalysis to quantify the calcium levels in papillary tissue from CaOx ICSF patients suggesting a vas wash down mechanism for plaque formation.
Aim 5 a and b will determine if renal tissue protein expression of CaSR, VDR and various targets of VDR activation are increased in CaOx ICSF. Lastly, Aim 6 will determine if membrane location and/or abundance is abnormal for transporters involved in calcium handling, in those CaOx ICSF with documented markedly abnormal reduction of post-prandial calcium reabsorption compared to CaP ICSF and non-stone forming controls. These new Aims will greatly advance our understanding of the precise mechanisms of stone formation and growth, which will hopefully translate into more effective clinical treatments for stone disease.

Public Health Relevance

Our enduring objective has been to learn how kidney stones form, so that treatments can be improved by a greater understanding. Along the way we have realized that stone formers are not homogeneous, even when they seem to be so. Calcium oxalate stone formers grow their stones over papillary deposits of interstitial apatite called Randall's plaque. We will determine how hypercalciuria, or other factors create plaque so that new treatments can be developed to prevent plague formation and thus, stone formation.

Agency
National Institute of Health (NIH)
Institute
National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK)
Type
Research Program Projects (P01)
Project #
2P01DK056788-11A1
Application #
8231181
Study Section
Special Emphasis Panel (ZDK1-GRB-R (M2))
Project Start
2011-09-20
Project End
2016-07-30
Budget Start
2011-09-20
Budget End
2012-07-31
Support Year
11
Fiscal Year
2011
Total Cost
$347,501
Indirect Cost
Name
University of Chicago
Department
Type
DUNS #
005421136
City
Chicago
State
IL
Country
United States
Zip Code
60637
Winfree, Seth; Khan, Shehnaz; Micanovic, Radmila et al. (2017) Quantitative Three-Dimensional Tissue Cytometry to Study Kidney Tissue and Resident Immune Cells. J Am Soc Nephrol 28:2108-2118
Winfree, Seth; Ferkowicz, Michael J; Dagher, Pierre C et al. (2017) Large-scale 3-dimensional quantitative imaging of tissues: state-of-the-art and translational implications. Transl Res 189:1-12
Williams Jr, James C; Worcester, Elaine; Lingeman, James E (2017) What can the microstructure of stones tell us? Urolithiasis 45:19-25
Borofsky, Michael S; Paonessa, Jessica E; Evan, Andrew P et al. (2016) A Proposed Grading System to Standardize the Description of Renal Papillary Appearance at the Time of Endoscopy in Patients with Nephrolithiasis. J Endourol 30:122-7
Coe, Fredric L; Worcester, Elaine M; Evan, Andrew P (2016) Idiopathic hypercalciuria and formation of calcium renal stones. Nat Rev Nephrol 12:519-33
Borofsky, Michael S; Wollin, Daniel A; Reddy, Thanmaya et al. (2016) Salvage Percutaneous Nephrolithotomy: Analysis of Outcomes following Initial Treatment Failure. J Urol 195:977-81
Handa, Rajash K; Lingeman, James E; Bledsoe, Sharon B et al. (2016) Intraluminal measurement of papillary duct urine pH, in vivo: a pilot study in the swine kidney. Urolithiasis 44:211-7
Hoover, Robert S; Tomilin, Viktor; Hanson, Lauren et al. (2016) PTH modulation of NCC activity regulates TRPV5 Ca2+ reabsorption. Am J Physiol Renal Physiol 310:F144-51
Witzmann, Frank A; Evan, Andrew P; Coe, Fredric L et al. (2016) Label-free proteomic methodology for the analysis of human kidney stone matrix composition. Proteome Sci 14:4
Ko, Benjamin; Bergsland, Kristin; Gillen, Daniel L et al. (2015) Sex differences in proximal and distal nephron function contribute to the mechanism of idiopathic hypercalcuria in calcium stone formers. Am J Physiol Regul Integr Comp Physiol 309:R85-92

Showing the most recent 10 out of 136 publications