In the past funding period, we have identified strong associations between circulating levels of branched- chain amino acids (BCAA-Leu, Val, He) and chronic metabolic diseases in multiple human cohorts. In each case, principal component analysis identified a correlating group of metabolites comprised of all three BCAA, aromatic amino acids (Phe, Tyr), and C3 and C5 acylcarnitines, with disease associations much stronger than for any lipid-related principal component. Feeding studies involving BCAA supplementation of high fat diets demonstrated a contribution of BCAA to development of insulin resistance independent of body weight. However, the increases in BCAA, aromatic amino acids, and related metabolites that we observe in the blood of humans with metabolic diseases is not necessarily driven only by protein consumption, and could also be influenced by rates of amino acid catabolism and protein turnover, or changes in hormones, such as the substantial decrease in IGF-1 levels that we observe in obese humans. Herein, and in close collaboration with the other projects and cores, we will test an evolving model for BCAA-mediated impairment of insulin action involving decreased disposal of BCAA in adipose tissue, and consequent accumulation of BCAA metabolites in skeletal muscle. The role of decreased lGF-1 levels in control of amino acid homeostasis will also be studied. The overarching goal of Project 1 is to fully understand the metabolic and molecular changes that lead to perturbed BCAA homeostasis and loss of insulin sensitivity in animal models, thereby leading to better understanding of possible cause/effect relationships between BCAA and metabolic disease in human subjects.
Specific aims are: 1. To study the time course of changes in pathways of BCAA metabolism during development of insulin resistance in Zucker-obese rats;2. To expand upon our prior studies of dietary supplementation of BCAA in normal rats to include Leu alone and aromatic amino acids;3. To investigate the impact of three maneuvers designed to reverse defects in BCAA metabolism and insulin resistance in Zucker-obese rats;4. To investigate the effects of HF or HF + BCAA feeding on insulin sensitivity, BCAA levels, and BCAA metabolism in mice with reduced circulating IGF-1

Public Health Relevance

The studies described in this project will contribute to a deeper understanding of the events leading to dysregulated BCAA homeostasis and loss of insulin sensitivity in animal models, thereby leading to better understanding of possible cause/effect relationships between BCAA and metabolic disease in humans.

Agency
National Institute of Health (NIH)
Institute
National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK)
Type
Research Program Projects (P01)
Project #
5P01DK058398-12
Application #
8466960
Study Section
Special Emphasis Panel (ZDK1-GRB-N)
Project Start
Project End
Budget Start
2013-05-01
Budget End
2014-04-30
Support Year
12
Fiscal Year
2013
Total Cost
$1,300,327
Indirect Cost
$129,944
Name
Duke University
Department
Type
DUNS #
044387793
City
Durham
State
NC
Country
United States
Zip Code
27705
Shantavasinkul, Prapimporn Chattranukulchai; Muehlbauer, Michael J; Bain, James R et al. (2018) Improvement in insulin resistance after gastric bypass surgery is correlated with a decline in plasma 2-hydroxybutyric acid. Surg Obes Relat Dis 14:1126-1132
McGarrah, Robert W; Crown, Scott B; Zhang, Guo-Fang et al. (2018) Cardiovascular Metabolomics. Circ Res 122:1238-1258
Fisher-Wellman, Kelsey H; Davidson, Michael T; Narowski, Tara M et al. (2018) Mitochondrial Diagnostics: A Multiplexed Assay Platform for Comprehensive Assessment of Mitochondrial Energy Fluxes. Cell Rep 24:3593-3606.e10
Jin, Eunsook S; Lee, Min Hee; Murphy, Rebecca E et al. (2018) Pentose phosphate pathway activity parallels lipogenesis but not antioxidant processes in rat liver. Am J Physiol Endocrinol Metab 314:E543-E551
Ren, Jimin; Shang, Ty; Sherry, A Dean et al. (2018) Unveiling a hidden 31 P signal coresonating with extracellular inorganic phosphate by outer-volume-suppression and localized 31 P MRS in the human brain at 7T. Magn Reson Med 80:1289-1297
An, Jie; Wang, Liping; Patnode, Michael L et al. (2018) Physiological mechanisms of sustained fumagillin-induced weight loss. JCI Insight 3:
Peterson, Brett S; Campbell, Jonathan E; Ilkayeva, Olga et al. (2018) Remodeling of the Acetylproteome by SIRT3 Manipulation Fails to Affect Insulin Secretion or ? Cell Metabolism in the Absence of Overnutrition. Cell Rep 24:209-223.e6
White, Phillip J; McGarrah, Robert W; Grimsrud, Paul A et al. (2018) The BCKDH Kinase and Phosphatase Integrate BCAA and Lipid Metabolism via Regulation of ATP-Citrate Lyase. Cell Metab 27:1281-1293.e7
Jin, Eunsook S; Browning, Jeffrey D; Murphy, Rebecca E et al. (2018) Fatty liver disrupts glycerol metabolism in gluconeogenic and lipogenic pathways in humans. J Lipid Res 59:1685-1694
Newgard, Christopher B (2017) Metabolomics and Metabolic Diseases: Where Do We Stand? Cell Metab 25:43-56

Showing the most recent 10 out of 181 publications