The animal management required for, and the vast amount of data generated from integrative longitudinal studies of the pathophysiology of gastric motor function necessitates considerable organization. The Physiological Characterization and Data Management Core C will provide the infrastructure required to support integrative longitudinal animal studies. Central to this infrastructure is a database, the Electronic Animal Research Record (EARR), designed specifically for this Program Project, that will be managed by Core C. EARR will store data for individual mice on secure servers. Stored data will include measurements and analyses directly made by Core C as well as relevant data generated from each Project and analysis of image datasets made by Imaging Core B. Image datasets will be stored on servers maintained in Imaging Core B but will be searchable from within EARR via a data pipeline between servers. All data will be relationally linked to an individual animal's EARR. Data analysis tools were designed specifically to meet the needs of Project investigators and will provide information required for rapid public sharing of the results of studies proposed in this application. Data mining tools developed by Core C and Imaging Core B will allow researchers to compile data from a vast number of animals to perform retrospective analyses. This database will be flexible to meet the evolving needs of the Project investigators. A second function of Core C will be to perform the gastric emptying assays in mice required by the Projects of the Program Project. The centralized organization of this single assay of gastric motor function will make efficient use of the equipment needed by all Projects, standardize the assay and ensure that quality controls are performed. Core C will also provide support for animal model management to the Projects through training and back-up technical service. Collectively, these functions of Core C will facilitate the Projects to reach their respective research aims. All Projects are united in the overall objective to identify molecular mechanisms of gastric motor dysfunction that will lead to clinical trials that test novel therapeutic interventions. The Physiological Characterization and Data Management Core C will help to make sure this objective is reached.

Public Health Relevance

Physiological Characterization and Data Management Core (Core C) will provide Project investigators a structured, searchable and shareable database to aid the discovery of causes of gastric motor dysfunction with the intent that these discoveries may lead to clinical trials that test new treatments. Core C will also perform non-invasive gastric emptying assays to characterize gastric motor function and support all aspects of animal models management.

National Institute of Health (NIH)
National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK)
Research Program Projects (P01)
Project #
Application #
Study Section
Special Emphasis Panel (ZDK1-GRB-9)
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Mayo Clinic, Rochester
United States
Zip Code
Cipriani, Gianluca; Gibbons, Simon J; Verhulst, Pieter-Jan et al. (2016) Diabetic Csf1(op/op) mice lacking macrophages are protected against the development of delayed gastric emptying. Cell Mol Gastroenterol Hepatol 2:40-47
Rajan, Elizabeth; Gostout, Christopher J; Wong Kee Song, Louis M et al. (2016) Innovative gastric endoscopic muscle biopsy to identify all cell types, including myenteric neurons and interstitial cells of Cajal in patients with idiopathic gastroparesis: a feasibility study (with video). Gastrointest Endosc 84:512-7
Cipriani, Gianluca; Gibbons, Simon J; Kashyap, Purna C et al. (2016) Intrinsic Gastrointestinal Macrophages: Their Phenotype and Role in Gastrointestinal Motility. Cell Mol Gastroenterol Hepatol 2:120-130.e1
Nelson, A D; Camilleri, M; Acosta, A et al. (2016) Effects of ghrelin receptor agonist, relamorelin, on gastric motor functions and satiation in healthy volunteers. Neurogastroenterol Motil 28:1705-1713
Wang, Zhiquan; Zhang, Honglian; Liu, Ji et al. (2016) USP51 deubiquitylates H2AK13,15ub and regulates DNA damage response. Genes Dev 30:946-59
Yan, Huihuang; Tian, Shulan; Slager, Susan L et al. (2016) Genome-Wide Epigenetic Studies in Human Disease: A Primer on -Omic Technologies. Am J Epidemiol 183:96-109
Choi, Kyoung Moo; Gibbons, Simon J; Sha, Lei et al. (2016) Interleukin 10 Restores Gastric Emptying, Electrical Activity, and Interstitial Cells of Cajal Networks in Diabetic Mice. Cell Mol Gastroenterol Hepatol 2:454-467
Eisenman, S T; Gibbons, S J; Verhulst, P-J et al. (2016) Tumor necrosis factor alpha derived from classically activated ""M1"" macrophages reduces interstitial cell of Cajal numbers. Neurogastroenterol Motil :
Bharucha, A E; Daley, S L; Low, P A et al. (2016) Effects of hemin on heme oxygenase-1, gastric emptying, and symptoms in diabetic gastroparesis. Neurogastroenterol Motil 28:1731-1740
Halland, Magnus; Bharucha, Adil E (2016) Relationship Between Control of Glycemia and Gastric Emptying Disturbances in Diabetes Mellitus. Clin Gastroenterol Hepatol 14:929-36

Showing the most recent 10 out of 120 publications