Imaging Core B will continue to serve as an integrating center for all image-based techniques, procedures and analyses needed and used by all Projects in this Program Project. Core B will facilitate and coordinate technical interactions among the Projects and the Cores. Imaging Core B will provide the technical expertise, experience, computers, software, image acquisition, image processing and quantitative image analysis methods required to fully support the image-related research proposed in all three projects in this Program Project. This will be carried out by three distinct but related and synergistic components, namely In Vitro and Small Animal Imaging, In Vivo Human Imaging and Quantitative Image Analysis. All in vitro and in vivo image data produced by the three Projects wall be managed by Core B, from acquisition to analysis to reporting. Core B will provide routine and common services, such as data storage and backup, specimen preparation and imaging, 3D image reconstruction and rendering, robust image processing and quantitative analyses, database management, results reporting and external website maintenance. Several new methods will be developed for the projects - automated feature extraction, counting and analysis in cell and molecular images, dynamic MR imaging of the gastro-intestinal tract in patients, and advanced 3D image enhancement, segmentation, registration, classification and fusion of multimodality images of small animals. The Imaging Core will provide an efficient repository for all images and analysis results organized into a relational database for ready access by all Project investigators. Small animal image analysis results will be exported to the Core C database (EARR) for association with physiological data. Core B and C will together develop integrated data management tools to transparently access these two databases. These database management tools will facilitate comparative analyses and comprehensive data mining to determine associations and patterns in multimodality and longitudinal (temporal) datasets within and across projects. A website containing background, methods, results, publications and other relevant topics associated with all projects and cores in the Program Project will be maintained and routinely updated by Core B for external sharing of information produced for and by the Program Project.

Public Health Relevance

This Program Project is addressing critical unsolved problems in identification and characterization of dysregulation of motility in the gastrointestinal tract of patients with diabetes and eating disorders. The imaging science employed at both organ and cellular levels and the quantitative image analysis methods developed in this Core project will significantly facilitate achievement of the specific aims of all research in this program, leading to more comprehensive diagnoses and effective therapies for these disorders.

Agency
National Institute of Health (NIH)
Institute
National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK)
Type
Research Program Projects (P01)
Project #
5P01DK068055-10
Application #
8685964
Study Section
Special Emphasis Panel (ZDK1-GRB-9)
Project Start
Project End
Budget Start
2014-07-01
Budget End
2015-06-30
Support Year
10
Fiscal Year
2014
Total Cost
$304,484
Indirect Cost
$111,408
Name
Mayo Clinic, Rochester
Department
Type
DUNS #
006471700
City
Rochester
State
MN
Country
United States
Zip Code
55905
Cipriani, Gianluca; Gibbons, Simon J; Miller, Katie E et al. (2018) Change in Populations of Macrophages Promotes Development of Delayed Gastric Emptying in Mice. Gastroenterology 154:2122-2136.e12
Desai, A; O'Connor, M; Neja, B et al. (2018) Reproducibility of gastric emptying assessed with scintigraphy in patients with upper GI symptoms. Neurogastroenterol Motil 30:e13365
Miller, K E; Bajzer, Ž; Hein, S S et al. (2018) High temporal resolution gastric emptying breath tests in mice. Neurogastroenterol Motil :e13333
Karakashev, Sergey; Zhu, Hengrui; Wu, Shuai et al. (2018) CARM1-expressing ovarian cancer depends on the histone methyltransferase EZH2 activity. Nat Commun 9:631
Rajan, Elizabeth; Al-Bawardy, Badr; Gostout, Christopher J et al. (2018) Endoscopic muscle biopsy sampling of the duodenum and rectum: a pilot survival study in a porcine model to detect myenteric neurons. Gastrointest Endosc 87:600-606
Zhong, Jian; Ye, Zhenqing; Lenz, Samuel W et al. (2017) Purification of nanogram-range immunoprecipitated DNA in ChIP-seq application. BMC Genomics 18:985
Parthasarathy, Gopanandan; Kudva, Yogish C; Low, Phillip A et al. (2017) Relationship Between Gastric Emptying and Diurnal Glycemic Control in Type 1 Diabetes Mellitus: A Randomized Trial. J Clin Endocrinol Metab 102:398-406
Gibbons, Simon J; Grover, Madhusudan; Choi, Kyoung Moo et al. (2017) Repeat polymorphisms in the Homo sapiens heme oxygenase-1 gene in diabetic and idiopathic gastroparesis. PLoS One 12:e0187772
Hayashi, Yujiro; Toyomasu, Yoshitaka; Saravanaperumal, Siva Arumugam et al. (2017) Hyperglycemia Increases Interstitial Cells of Cajal via MAPK1 and MAPK3 Signaling to ETV1 and KIT, Leading to Rapid Gastric Emptying. Gastroenterology 153:521-535.e20
Camilleri, Michael; McCallum, Richard W; Tack, Jan et al. (2017) Efficacy and Safety of Relamorelin in Diabetics With Symptoms of Gastroparesis: A Randomized, Placebo-Controlled Study. Gastroenterology 153:1240-1250.e2

Showing the most recent 10 out of 134 publications