Our long-term goal is to elucidate the molecular mechanisms by which two mammalian Cu-ATPases regulate copper homeostasis in polarized epithelial cells. These Cu-ATPases have two functions that necessitate their intracellular redistribution, or trafficking, In a copper-sensitive and reversible manner. 1) They transport copper Into the secretory pathway to metallate newly-synthesized cuproenzymes. 2) They also export copper. ATP7A in intestinal epithelial cells delivers dietary Cu to the circulation (basolateral environment), and ATP7B in hepatic cells delivers excess Cu to the bile (apical environment). In this PPG, we will focus on the hepatic Cu-ATPase, ATP7B. Like the other membrane transport proteins being studied in this PPG, ATP7B trafficks In a regulated manner to the apical region of a polarized epithelial cell, the hepatocyte. Once there, it exports the metal ion Cu(l) Into bile. But the signals/mechanism(s) mediating the copper-sensitive targeting of ATP7B, the functional nature ofthe vesicles carrying the protein and the Cu(l) export mechanisms it uses at the apical membrane are currently unknown. Based on new results from two years of PPG funding, we will continue our studies in WIF-B cells and in vivo.
In Aim 1, we will identify sequences and domains in ATP7B itself that regulate its copper-dependent dynamics (TGN-retention, apical targeting and Cu(l) export). We will generate adenoviruses encoding C- and new N-terminal Wilson Disease :(WD)-causing GFP-ATP7B mutations, express them in WlF-B for protein expression and trafficking +/- Cu, and In MNK y/- cells (no ATP7A or ATP7B) for their Cu(l)-loading activity. We will determine Intramolecular interactions of ATP7B through analysis of 7B/7A chimera expression/trafficking phenotypes. We will perform FRAP studies on selected mutants.
In Aim 2, we will continue Identification, isolation and functional characterization of vesicles carrying endogenous ATP7B (and Cu(l)?) to the apical region of hepatocytes of copper-loaded mice. We will also identify ATP7B protein interactors +/- Cu. We will determine if ATP7B trafficks via the well-studied Rablla apical recycling compartment. Finally, we will express selected WD-ATP7B mutants in ATP7B-/- mice to determine the mutant protein's Cu(l) export phenotype in vivo.

Public Health Relevance

Copper-transporting ATPases, ATP7A and ATP7B, are important In health and disease. Hepatic ATP7B;normally exports excess copper from the liver. In the absence of ATP7B function, affected people develop j Wilson Disease, which is due to copper overload and is characterized by liver damage and/or abnormal;neurological symptoms. Thus, understanding the dynamics of hepatic ATP7B is important. ?:

National Institute of Health (NIH)
National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK)
Research Program Projects (P01)
Project #
Application #
Study Section
Special Emphasis Panel (ZDK1-GRB-8)
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Johns Hopkins University
United States
Zip Code
Gupta, Arnab; Schell, Michael J; Bhattacharjee, Ashima et al. (2016) Myosin Vb mediates Cu+ export in polarized hepatocytes. J Cell Sci 129:1179-89
In, Julie; Foulke-Abel, Jennifer; Zachos, Nicholas C et al. (2016) Enterohemorrhagic Escherichia coli reduce mucus and intermicrovillar bridges in human stem cell-derived colonoids. Cell Mol Gastroenterol Hepatol 2:48-62.e3
Zachos, Nicholas C; Kovbasnjuk, Olga; Foulke-Abel, Jennifer et al. (2016) Human Enteroids/Colonoids and Intestinal Organoids Functionally Recapitulate Normal Intestinal Physiology and Pathophysiology. J Biol Chem 291:3759-66
Foulke-Abel, Jennifer; In, Julie; Yin, Jianyi et al. (2016) Human Enteroids as a Model of Upper Small Intestinal Ion Transport Physiology and Pathophysiology. Gastroenterology 150:638-649.e8
Cebotaru, Liudmila; Liu, Qiangni; Yanda, Murali K et al. (2016) Inhibition of histone deacetylase 6 activity reduces cyst growth in polycystic kidney disease. Kidney Int 90:90-9
Braiterman, Lelita T; Gupta, Arnab; Chaerkady, Raghothama et al. (2015) Communication between the N and C termini is required for copper-stimulated Ser/Thr phosphorylation of Cu(I)-ATPase (ATP7B). J Biol Chem 290:8803-19
Janecke, Andreas R; Heinz-Erian, Peter; Yin, Jianyi et al. (2015) Reduced sodium/proton exchanger NHE3 activity causes congenital sodium diarrhea. Hum Mol Genet 24:6614-23
Chen, Tiane; Kocinsky, Hetal S; Cha, Boyoung et al. (2015) Cyclic GMP kinase II (cGKII) inhibits NHE3 by altering its trafficking and phosphorylating NHE3 at three required sites: identification of a multifunctional phosphorylation site. J Biol Chem 290:1952-65
Zhu, Xinjun Cindy; Sarker, Rafiquel; Horton, John R et al. (2015) Nonsynonymous single nucleotide polymorphisms of NHE3 differentially decrease NHE3 transporter activity. Am J Physiol Cell Physiol 308:C758-66
Yang, Jianbo; Sarker, Rafiquel; Singh, Varsha et al. (2015) The NHERF2 sequence adjacent and upstream of the ERM-binding domain affects NHERF2-ezrin binding and dexamethasone stimulated NHE3 activity. Biochem J 470:77-90

Showing the most recent 10 out of 61 publications