The Mount Sinai Hospital performs approximately 800 intestinal resections every year, constituting a potentially vast resource of tissues for basic investigation. For many years, the P.I. of the PPG (Dr. Mayer) has been working closely with Dr. Harpaz (Director of Gl Pathology) to secure surgical specimens for research, as evidenced by the Preliminary Results presented. Over the past granting period this facilitated the successful completion of human studies for this project demonstrating the success of more formally organizing a Pathology Core that simultaneously supports all projects in the current Program Project Grant. This resource is quite unique as it ensures integration across the several projects such that the same specimen is used for several different types of experiments to permit more meaningful interpretation of data.
The Specific Aims of the Pathology Core are as follows:
Specific Aim 1 : To retrieve, process, and distribute suitable specimens for the four Projects as needed (human - projects 1-4;murine - projects 1-4).
Specific Aim 2 : To stabilize and preserve undistributed tissues for long-term storage and make them available to Projects or investigators as needed.
Specific Aim 3 : To maintain a detailed tissue database documenting the anatomic sources, the gross and microscopic pathological characteristics of the individual tissue specimens, and the clinical and pathological data pertaining to the patients from whom specimens were derived.
Specific Aim 4 : To perform blinded histologic evaluation and scoring of inflammation in the different murine models used in all projects. Immunohistochemistry, and RNA analysis is performed in the specific laboratories of the individual investigators according to their expertise (see below for specifics). Only specimen acquisition, cell isolation (accessioning tech), distribution, storage, histologic analysis and maintenance of the database is performed in this core. The budget reflects the costs of these latter functions.

Public Health Relevance

The Pathology core has been instrumental in providing valuable resources for all investigators, be it human tissues that are well characterized or clear insights into the pathology in a number of new murine models of disease. It is the enabling core for this program.

National Institute of Health (NIH)
National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK)
Research Program Projects (P01)
Project #
Application #
Study Section
Special Emphasis Panel (ZDK1-GRB-8)
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Icahn School of Medicine at Mount Sinai
New York
United States
Zip Code
Chen, L; He, Z; Slinger, E et al. (2015) IL-23 activates innate lymphoid cells to promote neonatal intestinal pathology. Mucosal Immunol 8:390-402
Kent, Andrew; Blander, J Magarian (2014) Nod-like receptors: key molecular switches in the conundrum of cancer. Front Immunol 5:185
Bongers, Gerold; Pacer, Michelle E; Geraldino, Thais H et al. (2014) Interplay of host microbiota, genetic perturbations, and inflammation promotes local development of intestinal neoplasms in mice. J Exp Med 211:457-72
Sicherer, Scott H; Wood, Robert A; Vickery, Brian P et al. (2014) The natural history of egg allergy in an observational cohort. J Allergy Clin Immunol 133:492-9
Caubet, Jean-Christoph; Masilamani, Madhan; Rivers, Neisha A et al. (2014) Potential non-T cells source of interleukin-4 in food allergy. Pediatr Allergy Immunol 25:243-9
Moretti, Julien; Blander, J Magarian (2014) Insights into phagocytosis-coupled activation of pattern recognition receptors and inflammasomes. Curr Opin Immunol 26:100-10
Blander, J Magarian (2014) A long-awaited merger of the pathways mediating host defence and programmed cell death. Nat Rev Immunol 14:601-18
Davenport, Michael; Poles, Jordan; Leung, Jacqueline M et al. (2014) Metabolic alterations to the mucosal microbiota in inflammatory bowel disease. Inflamm Bowel Dis 20:723-31
Hammerich, Linda; Bangen, Jörg M; Govaere, Olivier et al. (2014) Chemokine receptor CCR6-dependent accumulation of ?? T cells in injured liver restricts hepatic inflammation and fibrosis. Hepatology 59:630-42
Manganaro, Lara; Pache, Lars; Herrmann, Tobias et al. (2014) Tumor suppressor cylindromatosis (CYLD) controls HIV transcription in an NF-?B-dependent manner. J Virol 88:7528-40

Showing the most recent 10 out of 50 publications