The critical role of inflammation in obesity and T2D is now well established. Under this Grant, we have focused on defining the roles of components of the NCoR/SMRT co-repressor complexes in inflammation, including TBL1/TBLR1 and GPS2, and the development of a new technology that has permitted us to examine interactions between distant genomic regions. We have identified a new mechanism by which GPS2 protects cells against a hyper-infiammatory state, and we have uncovered novel roles of ncRNAs in targeting co-regulatory complexes to discreet locations In the nucleus with speciflc transcriptional functions. In this Project, we will capitalize on these recent discoveries to advance three new Specific Aims.
In Specific Aim 1, we will delineate the molecular mechanisms by which GPS2, an NCoR/SMRT-associated protein, suppresses hyper-inflammatory transcriptional responses in both macrophages and adipose tissue. These studies will test the hypothesis that GPS2 functions to regulate PPARy activity and infiammatory responses by acting both in the nucleus as a component of NCoR co-repressor complexes, and at the plasma membrane as an inhibitor of cell surface receptors that mediate responses to inducers and amplifiers of inflammation.
In Specific Aim II, we will define the molecular and physiological roles of SMRT in macrophages and adipocytes. In concert with the unexpected findings by Projects 1 and 3 that deletion of the related co-repressor NCoR from either adipocytes or macrophages results in protection from obesity- induced insulin resistance, these studies may facilitate the identification of chemicals/ligands that selectively regulate insulin-sensitizing functions of nuclear receptors, such as PPARy.
In Specific Aim 1 11, we will test the hypothesis that pro-infiammatory gene activation requires regulated interactions of promoter-associated transcriptional co-regulators with non-coding RNAs resident in specific sub-nuclear architectural structures. We will investigate whether directed movements between these sub-nuclear structures are required for regulated gene expression. These studies will therefore explore conceptually new cellular mechanisms for transcriptional control of gene expression that may be targets for therapeutic intervention.

Public Health Relevance

The proposed studies will be of significance in advancing our understanding of central pathogenic mechanisms that drive the development of insulin resistance and contribue to the development of future therapeutic approaches to prevent and treat type 2 diabetes.

Agency
National Institute of Health (NIH)
Type
Research Program Projects (P01)
Project #
5P01DK074868-08
Application #
8665905
Study Section
Special Emphasis Panel (ZDK1)
Project Start
Project End
Budget Start
Budget End
Support Year
8
Fiscal Year
2014
Total Cost
Indirect Cost
Name
University of California San Diego
Department
Type
DUNS #
City
La Jolla
State
CA
Country
United States
Zip Code
92093
Li, Pingping; Liu, Shuainan; Lu, Min et al. (2016) Hematopoietic-Derived Galectin-3 Causes Cellular and Systemic Insulin Resistance. Cell 167:973-984.e12
Glass, Christopher K; Natoli, Gioacchino (2016) Molecular control of activation and priming in macrophages. Nat Immunol 17:26-33
Baeza-Raja, Bernat; Sachs, Benjamin D; Li, Pingping et al. (2016) p75 Neurotrophin Receptor Regulates Energy Balance in Obesity. Cell Rep 14:255-68
Oh, Da Young; Olefsky, Jerrold M (2016) G protein-coupled receptors as targets for anti-diabetic therapeutics. Nat Rev Drug Discov 15:161-72
Glass, Christopher K (2015) Genetic and genomic approaches to understanding macrophage identity and function. Arterioscler Thromb Vasc Biol 35:755-62
Li, Wenbo; Hu, Yiren; Oh, Soohwan et al. (2015) Condensin I and II Complexes License Full Estrogen Receptor α-Dependent Enhancer Activation. Mol Cell 59:188-202
Puc, Janusz; Kozbial, Piotr; Li, Wenbo et al. (2015) Ligand-dependent enhancer activation regulated by topoisomerase-I activity. Cell 160:367-80
Gorden, D Lee; Myers, David S; Ivanova, Pavlina T et al. (2015) Biomarkers of NAFLD progression: a lipidomics approach to an epidemic. J Lipid Res 56:722-36
Kesby, James P; Kim, Jane J; Scadeng, Miriam et al. (2015) Spatial Cognition in Adult and Aged Mice Exposed to High-Fat Diet. PLoS One 10:e0140034
Fang, Sungsoon; Suh, Jae Myoung; Reilly, Shannon M et al. (2015) Intestinal FXR agonism promotes adipose tissue browning and reduces obesity and insulin resistance. Nat Med 21:159-65

Showing the most recent 10 out of 106 publications