Project 1 will use a translational research pipeline for human gut microbiota-directed diagnostics and therapeutics we developed based on gnotobiotic mice harboring microbiota transplanted from three types of adult twin pairs discordant for obesity and/or its associated metabolic abnormalities [LeanMetabolicallyHealthy-Obese Metabolically Unhealthy (LnMH/ObMUN), LnMH/ObMH, ObMH/ObMUN]. Its goal is to (i) establish a causal role of the gut microbiota in obesity and associated metabolic phenotypes, (ii) obtain mechanistic insights about the interactions between diet and members of the gut microbiota that produce these phenotypes, (iii) conduct tests of the effects of manipulating diet and bacterial taxa on phenotypes transmitted by ObMUN microbiota. Project 1 has 4 aims. (1) Determine the effects of microbiota, collected from twin pairs at the end of the each of their two in-home diet periods, on body composition/metabolic phenotypes of recipient adult gnotobiotic mice given a diet homologous to that consumed at the time the donor's microbiota was collected or the other diet that twins will have consumed (cross-over diet group). Within-pair, between-twin pair comparisons and across discordant pair type comparisons will be performed. (2) Co-house gnotobiotic mice harboring intact uncultured microbiota from discordant pairs to determine if (i) microbiota from the LnMH donor prevents or ameliorates development of obesity- and obesity-associated metabolic dysfunction in mice colonized with the ObMH or ObMUN co-twin's microbiota, and how prevention/amelioration correlates with invasion of bacterial taxa from the microbiota of one cagemate to the other, and later comparable co-housing experiments involving ObMH and ObMUN mice. (3) Determine if bacterial culture collections prepared from microbiota samples characterized in Aim 2 also transfer discordant donor phenotypes to gnotobiotic mice;perform co-housing experiments to identify invasive cultured taxa associated with phenotypic rescue in different diet contexts. (4) Execute a testing matrix in which a culture collection from a representative ObMUN or ObMH co-twin are introduced to separate groups of gnotobiotic mice fed a representative USA diet high in saturated fats and low in fruits and vegetables, alone or with a lead probiotic consortium (invasive taxa identified from aims 2, 3), or a lead prebiotic (identified from in vitro screen), or a combination of the two (synbiotic lead). The therapeutic lead will be administered at the time of colonization with the culture collection (prevention arm) or 2 weeks after initial colonization (treatment arm). Metabolic profiling will be performed with Core A. Multi-omics datasets will be analyzed with existing tools and used to generate new analysis strategies with Project 3 and Core B.

Public Health Relevance

Efforts to characterize the human gut community in health and disease are producing vast amounts of data about its organismal and gene content and variations. A great challenge is to complement these efforts with a preclinical research pipeline that directly tests whether observed differences in microbiota configurations are a cause rather than effect of host physiology/disease. We will use such a pipeline to gain insights about the pathogenesis of obesity and associated metabolic abnormalities, and conduct preclinical tests for microbiota- directed therapeutics.

National Institute of Health (NIH)
Research Program Projects (P01)
Project #
Application #
Study Section
Special Emphasis Panel (ZDK1)
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Washington University
Saint Louis
United States
Zip Code
Faith, Jeremiah J; Colombel, Jean-Frédéric; Gordon, Jeffrey I (2015) Identifying strains that contribute to complex diseases through the study of microbial inheritance. Proc Natl Acad Sci U S A 112:633-40
Rosenbaum, Michael; Knight, Rob; Leibel, Rudolph L (2015) The gut microbiota in human energy homeostasis and obesity. Trends Endocrinol Metab 26:493-501
Heath, Andrew C (2015) Metagenomics: a new frontier for translational research and personalized therapeutics in psychiatry? Biol Psychiatry 77:600-1
Peterson, Daniel A; Planer, Joseph D; Guruge, Janaki L et al. (2015) Characterizing the interactions between a naturally primed immunoglobulin A and its conserved Bacteroides thetaiotaomicron species-specific epitope in gnotobiotic mice. J Biol Chem 290:12630-49
Subramanian, Sathish; Blanton, Laura V; Frese, Steven A et al. (2015) Cultivating healthy growth and nutrition through the gut microbiota. Cell 161:36-48
Dey, Neelendu; Wagner, Vitas E; Blanton, Laura V et al. (2015) Regulators of gut motility revealed by a gnotobiotic model of diet-microbiome interactions related to travel. Cell 163:95-107
Luo, Chengwei; Knight, Rob; Siljander, Heli et al. (2015) ConStrains identifies microbial strains in metagenomic datasets. Nat Biotechnol 33:1045-52
Ussar, Siegfried; Griffin, Nicholas W; Bezy, Olivier et al. (2015) Interactions between Gut Microbiota, Host Genetics and Diet Modulate the Predisposition to Obesity and Metabolic Syndrome. Cell Metab 22:516-30
Duncan, Alexis E; Sartor, Carolyn E; Jonson-Reid, Melissa et al. (2015) Associations between body mass index, post-traumatic stress disorder, and child maltreatment in young women. Child Abuse Negl 45:154-62
Walters, William A; Xu, Zech; Knight, Rob (2014) Meta-analyses of human gut microbes associated with obesity and IBD. FEBS Lett 588:4223-33

Showing the most recent 10 out of 74 publications