This Project, synergistic with Project 1, will evaluate the association between the gut microbiota and obesity and its associated metabolic phenotypes. Background: In work by Project 1, when fecal microbiota from obese (Ob) and lean (Ln) twins from discordant pairs (not metabolically phenotyped) were transplanted to germ-free mice, Ob microbiota transmitted increased adiposity and metabolic features that accompany human insulin- resistant states (e.g., increased circulating levels of serum branched-chain amino acids). In addition, co- housing mice harboring Ob co-twin microbiota with mice containing transplanted Ln microbiota prevented development of these body composition and metabolic phenotypes in the Ob cagemate: prevention was associated with unidirectional invasion of bacterial taxa from the Ln to the Ob cagemate's gut community, indicative of unfilled niches in Ob microbiota that could be occupied, but only under certain dietary contexts (observed under a low saturated fat/high fruit &vegetable [LoSF-HiFV) diet, but not under a HiSF-LoFV diet). Results were consistent with previous findings of reduced diversity in the microbiota of Ob individuals and suggest that fecal transplants from discordant twin pairs to gnotobiotic mice could help guide development of therapeutic strategies (microbial or diet-based) for restoration of the gut microbiota of the microbiota donor population to a pre-obese or metabolically healthy state. Approach: To better define the contributions of the microbiota to obesity and its associated metabolic dysfunctions, and to advance development of microbiota- directed interventions for treatment or prevention, we will identify, from a large panel of young adult female dizygotic twin pairs, three informative groups: pairs dually discordant for obesity and metabolically healthy/unhealthy (MH/MUN: indexed by hyperinsulinemic/euglycemic clamp [HEC]), pairs singly discordant for obesity, and pairs singly discordant for metabolic health (LnMH/ObMUN, LnMH/ObMH and ObMH/ObMUN pairs, Ln=BMI 18.5-24.9 kg/m2, Ob=BMI 30-44.9). Pairs will undergo HEC and body-composition analyses to quantify insulin-resistance and confirm group assignment. Pairs will provide fecal, urine and blood (serum) samples under free diet (1 week), with daily recording of diet intake, then complete an in-home cross-over controlled diet study, eating in random order a controlled HiSF-LoFV diet (2 weeks), and a controlled more healthy diet (LoSF-HiFV, 2 weeks), with continuing provision of fecal, urine, and end-of-diet blood samples. Human-to- mouse fecal transplant experiments (Project 1), using donor feces collected under LoSF-HiFV versus HiSF- LoFV diet conditions, will be used to characterize transmissibility of donor phenotypes, their sensitivity to diet and the degree of prevention of transmitted ObMUN and ObMH phenotypes achievable with co-housing with Ln mice (as a function of bacterial invasion pattern and diet type). Metabolomic analyses (Core A) will be used to test whether metabolic phenotypes observed in mice fed diets similar in composition to the human diets, represent those present in the humans. Increased recruitment of twin pairs will ensure adequate power.

Public Health Relevance

Obesity commonly involves changes in metabolic function that increase risk of cardiovascular disease. However, some obese individuals remain healthy. This project, collaboratively with basic science Project 1 and metabolomics Core A, seeks to clarify the involvement of gut microbes in obesity and obesity-associated metabolic health, and to explore the therapeutic potential of diet change combined with restoration of the gut microbiota to a pre-obese state.

National Institute of Health (NIH)
Research Program Projects (P01)
Project #
Application #
Study Section
Special Emphasis Panel (ZDK1)
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Washington University
Saint Louis
United States
Zip Code
Faith, Jeremiah J; Colombel, Jean-Frédéric; Gordon, Jeffrey I (2015) Identifying strains that contribute to complex diseases through the study of microbial inheritance. Proc Natl Acad Sci U S A 112:633-40
Rosenbaum, Michael; Knight, Rob; Leibel, Rudolph L (2015) The gut microbiota in human energy homeostasis and obesity. Trends Endocrinol Metab 26:493-501
Heath, Andrew C (2015) Metagenomics: a new frontier for translational research and personalized therapeutics in psychiatry? Biol Psychiatry 77:600-1
Peterson, Daniel A; Planer, Joseph D; Guruge, Janaki L et al. (2015) Characterizing the interactions between a naturally primed immunoglobulin A and its conserved Bacteroides thetaiotaomicron species-specific epitope in gnotobiotic mice. J Biol Chem 290:12630-49
Subramanian, Sathish; Blanton, Laura V; Frese, Steven A et al. (2015) Cultivating healthy growth and nutrition through the gut microbiota. Cell 161:36-48
Dey, Neelendu; Wagner, Vitas E; Blanton, Laura V et al. (2015) Regulators of gut motility revealed by a gnotobiotic model of diet-microbiome interactions related to travel. Cell 163:95-107
Luo, Chengwei; Knight, Rob; Siljander, Heli et al. (2015) ConStrains identifies microbial strains in metagenomic datasets. Nat Biotechnol 33:1045-52
Ussar, Siegfried; Griffin, Nicholas W; Bezy, Olivier et al. (2015) Interactions between Gut Microbiota, Host Genetics and Diet Modulate the Predisposition to Obesity and Metabolic Syndrome. Cell Metab 22:516-30
Duncan, Alexis E; Sartor, Carolyn E; Jonson-Reid, Melissa et al. (2015) Associations between body mass index, post-traumatic stress disorder, and child maltreatment in young women. Child Abuse Negl 45:154-62
Walters, William A; Xu, Zech; Knight, Rob (2014) Meta-analyses of human gut microbes associated with obesity and IBD. FEBS Lett 588:4223-33

Showing the most recent 10 out of 74 publications