Proj 1: The discovery of reprogramming somatic cells to induced pluripotent stem cells has opened new dimensions for the study and treatment of human diseases. Since the first description of reprogramming mouse IPS cells by introducing 4 transcription factor genes with retroviral vectors, mouse and human cells of many cell types have been successfully reprogrammed. Although retroviral vectors are still the most proficient vehicles for reprogramming, their property of random integration may cause damage by disrupting vital host gene functions. Many other vehicles for introducing transcription factors have been reported, including plasmids, EB based plasmid vectors, adenoviral vectors, transposons, lentiviral vectors and proteins. Some of these methods are inefficient for reprogramming human somatic cells. Lentiviral vectors also integrate randomly into the genome although they could be removed with cre-lox.
The aim of this project is to investigate novel IPS techniques that can be applied in the future to the treatment of sickle cell disease and B-thalassemia, the 2 most common genetic diseases. We will use 2 strategies. The first is to introduce the 4 transcription factor genes 0CT4, S0X2, FLT4 and cMYC linked by 2A peptides using PhiC31 integrase fpr site-specific integration. The second strategy, directed by the co-investigator Long-Cheng Li, will use his innovation of short activator double stranded RNA to stimulate the expression ofthe endogenous transcription factor genes. He has shown that these saRNAs can stimulate expression of endogenous genes of various kinds. The strategies we propose have the advantage of not disturbing the functions of the host genes. Our project is directed to eventual application to sickle cell disease and thalassemia. We will reprogram skin biopsy cells from patents as well as amniotic fluid and CVS cells which will be useful for early cell therapy after prenatal diagnosis.

Public Health Relevance

This project aims to develop approaches to produce patient-specific IPS (induced pluripotent stem) cells, from patients with sickle cell disease and beta-thalassemia, with the aim of eventual application to their future treatment.

National Institute of Health (NIH)
National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK)
Research Program Projects (P01)
Project #
Application #
Study Section
Special Emphasis Panel (ZDK1-GRB-6)
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of California San Francisco
San Francisco
United States
Zip Code
Muench, Marcus O; Beyer, Ashley I; Fomin, Marina E et al. (2014) The adult livers of immunodeficient mice support human hematopoiesis: evidence for a hepatic mast cell population that develops early in human ontogeny. PLoS One 9:e97312
Ye, Lin; Wang, Jiaming; Beyer, Ashley I et al. (2014) Seamless modification of wild-type induced pluripotent stem cells to the natural CCR5?32 mutation confers resistance to HIV infection. Proc Natl Acad Sci U S A 111:9591-6
Fomin, M E; Togarrati, P P; Muench, M O (2014) Progress and challenges in the development of a cell-based therapy for hemophilia A. J Thromb Haemost 12:1954-65
Xie, Fei; Ye, Lin; Chang, Judy C et al. (2014) Seamless gene correction of ?-thalassemia mutations in patient-specific iPSCs using CRISPR/Cas9 and piggyBac. Genome Res 24:1526-33
Sargent, R Geoffrey; Suzuki, Shingo; Gruenert, Dieter C (2014) Nuclease-mediated double-strand break (DSB) enhancement of small fragment homologous recombination (SFHR) gene modification in human-induced pluripotent stem cells (hiPSCs). Methods Mol Biol 1114:279-90
Fomin, Marina E; Zhou, Yanchen; Beyer, Ashley I et al. (2013) Production of factor VIII by human liver sinusoidal endothelial cells transplanted in immunodeficient uPA mice. PLoS One 8:e77255
Ng, Terry Fei Fan; Kondov, Nikola O; Hayashimoto, Nobuhito et al. (2013) Identification of an astrovirus commonly infecting laboratory mice in the US and Japan. PLoS One 8:e66937
Ye, Lin; Muench, Marcus O; Fusaki, Noemi et al. (2013) Blood cell-derived induced pluripotent stem cells free of reprogramming factors generated by Sendai viral vectors. Stem Cells Transl Med 2:558-66