A1-antitrypsin (AT) deficiency (ATD) is the most common genetic cause of liver disease. The classical form of ATD is due to a single missense mutation (Z) that causes the mutant protein (ATZ) to misfold and accumulate within the endoplasmic reticulum (ER) of liver cells as toxic oligomers, polymers or aggregates. However, due to genetic and environmental modifiers, there is marked variation in the incidence and severity of liver disease among homozygotes. Since the only treatment for severe ATZ-induced hepatic injury is liver transplantation, the development of an animal model amenable to pre-clinical, high-throughput drug screening technologies would greatly assist in the discovery of new compounds that reduce or eliminate ATZ-induced hepatotoxicity. The value of the model would be markedly increased if it also possessed genetic tractability to: 1) elucidate the genetic modifiers of both tissue damage and the endogenous proteostasis pathways that protect against protein misfolding-induced injury, and 2) pinpoint which biochemical pathways and/or molecules are targeted by newly discovered compounds. We show that ATZ induced liver disease is modeled accurately in the nematode, C. elegans. Transgenic animals expressing wild-type human AT secreted the protein. In contrast, animals expressing ATZ faithfully recapitulated the ER trafficking defect of ATZ by demonstrating intracellular inclusions (dilated ER cisterna), and becoming unhealthy as shown by slow growth, small brood sizes and decreased longevity. Using this model we developed an automated, live-animal, high-content screening (HOS) assay that rivals that of any cell-based system. We validated this system by discovering -30 hit compounds, including several that reduced ATZ accumulation by enhancing autophagy, a known pathway of ATZ elimination. Using a modification of our HOS strategy, we also developed a semi-automated technology that reduces the labor intensiveness of genome-wide RNAi screens. We identified several potential genetic modifiers/pathways of ATZ accumulation. Taken together, these studies demonstrated that this transgenic C. elegans model is a powerful platform to initiate the discovery of both novel drugs and genes that modify ATZ hepatotoxicity.
The aims of Project 2 are to discover additional hit compounds for the treatment of ATZ-induced disease phenotypes in C. elegans by both HCS and computer-aided molecular modeling, identify disease modifiers of major and minor effect, and to determine whether different mutant disease modifiers alter responsiveness to therapeutic compounds.

Public Health Relevance

Alpha-1-antitrypsin deficiency is a leading genetic cause of liver injury, but lacks effective treatments. The goal of this study is to model this disease in a simple organism, and use this tool to screen a large collection of chemical compounds for novel drugs that block the development of liver injury.

Agency
National Institute of Health (NIH)
Institute
National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK)
Type
Research Program Projects (P01)
Project #
5P01DK096990-03
Application #
8720760
Study Section
Special Emphasis Panel (ZDK1-GRB-8)
Project Start
Project End
Budget Start
2014-09-01
Budget End
2015-08-31
Support Year
3
Fiscal Year
2014
Total Cost
$350,944
Indirect Cost
$112,118
Name
University of Pittsburgh
Department
Type
DUNS #
004514360
City
Pittsburgh
State
PA
Country
United States
Zip Code
15213
O'Reilly, Linda P; Long, Olivia S; Cobanoglu, Murat C et al. (2014) A genome-wide RNAi screen identifies potential drug targets in a C. elegans model of ?1-antitrypsin deficiency. Hum Mol Genet 23:5123-32
Long, Olivia S; Benson, Joshua A; Kwak, Joon Hyeok et al. (2014) A C. elegans model of human ?1-antitrypsin deficiency links components of the RNAi pathway to misfolded protein turnover. Hum Mol Genet 23:5109-22
Miedel, Mark T; Zeng, Xuemei; Yates, Nathan A et al. (2014) Isolation of serpin-interacting proteins in C. elegans using protein affinity purification. Methods 68:536-41
Bhatia, Sangeeta N; Underhill, Gregory H; Zaret, Kenneth S et al. (2014) Cell and tissue engineering for liver disease. Sci Transl Med 6:245sr2
O'Reilly, Linda P; Luke, Cliff J; Perlmutter, David H et al. (2014) C. elegans in high-throughput drug discovery. Adv Drug Deliv Rev 69-70:247-53
Chu, Andrew S; Perlmutter, David H; Wang, Yan (2014) Capitalizing on the autophagic response for treatment of liver disease caused by alpha-1-antitrypsin deficiency and other genetic diseases. Biomed Res Int 2014:459823
O'Reilly, Linda P; Perlmutter, David H; Silverman, Gary A et al. (2014) *1-antitrypsin deficiency and the hepatocytes - an elegans solution to drug discovery. Int J Biochem Cell Biol 47:109-12
Li, Jie; Pak, Stephen C; O'Reilly, Linda P et al. (2014) Fluphenazine reduces proteotoxicity in C. elegans and mammalian models of alpha-1-antitrypsin deficiency. PLoS One 9:e87260
Fox, Ira J; Daley, George Q; Goldman, Steven A et al. (2014) Stem cell therapy. Use of differentiated pluripotent stem cells as replacement therapy for treating disease. Science 345:1247391
Wang, Yan; Perlmutter, David H (2014) Targeting intracellular degradation pathways for treatment of liver disease caused by *1-antitrypsin deficiency. Pediatr Res 75:133-9

Showing the most recent 10 out of 14 publications