Critical obstacles have impeded studies of the pathobiology of pancreatitis. First, molecular approaches are difficult to apply in primary acinar cells, which are short-lived and difficult to transfect using chemical or physical methods for gene delivery using plasmid DNA. Second, it is difficult to assess whether findings in animal models are relevant to human disease because the lack of availability of human tissues. This includes freshly isolated human acinar cells as well as tissues with pancreatitis. However, significant advances have been made in recent years in overcoming these obstacles. Success has been achieved in transfecting primary acinar cells using viral vector-mediated gene delivery methods. Furthermore, we and others now find that a plentiful supply of functional human acinar cells can be generated as a byproduct of tissue isolation used for islet transplant programs. The Vector and Human Acinar Core will provide Program researchers with the tools, i.e., viral vectors, human acinar cells, transduction methods for mouse and human cells) needed to perform their specific mechanistic studies and to extend their findings from animal models into human pathology. The Core comprises 3 sub-Cores. The Vector sub-Core will design, construct, and produce adenoviral and lentiviral vectors bearing transgenes of interest for individual projects (Aim 1). The Transduction sub-Core will determine conditions and perform efficient viral transduction of acinar cells (Aim 2). The Human acinar sub-Core will be responsible for isolating human acinar cells and using these cells in ex-vivo models of pancreatitis (Aim 3). The Core will also provide training of project investigators in acinar cell viral transduction and human cell isolation (Aim 4). Centralizing the proposed tasks in one Core will reduce costs through sharing of vectors, transduced cells and human acinar cells and also by applying standardized techniques for cell isolation and culture and genetic transduction. Furthermore, the availability of centralized reagents and standardized techniques to be provided to all Program investigators will help to ensure consistency, reliability, and reproducibility of experimental results. The Core will also provide training of project investigators in virus handling, acinar cell transduction and human cell isolation.

Public Health Relevance

Vector and Human Acinar Core: Narrative The Vector and Human Acinar Core is devoted to providing to Program investigators difficult to develop and use techniques, such as viral transductions, to regulate the expression of specific genes in both mouse and human primary acinar cells. This ability will allow the scientists in the Program to reveal undiscovered pathways involved in causing pancreatitis that could not be done otherwise. The human aspect of the Core is devoted to another challenge in the pancreatitis research field: making sure that the pathways of pancreatitis we see in mice are relevant to human disease. Thus, the Core will be devoted to obtaining and maintaining functional human acinar cells for experiments including the ones that use viral vectors.

National Institute of Health (NIH)
National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK)
Research Program Projects (P01)
Project #
Application #
Study Section
Special Emphasis Panel (ZDK1)
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of California Los Angeles
Los Angeles
United States
Zip Code
Donahue, Timothy R; Dawson, David W (2016) Leveraging Mechanisms Governing Pancreatic Tumorigenesis To Reduce Pancreatic Cancer Mortality. Trends Endocrinol Metab 27:770-781
Birtolo, Chiara; Pham, Hung; Morvaridi, Susan et al. (2016) Cadherin-11 Is a Cell Surface Marker Up-Regulated in Activated Pancreatic Stellate Cells and Is Involved in Pancreatic Cancer Cell Migration. Am J Pathol :
Yuan, Jingzhen; Pandol, Stephen J (2016) PKD signaling and pancreatitis. J Gastroenterol 51:651-9
Principe, Daniel R; DeCant, Brian; Mascariñas, Emman et al. (2016) TGFβ Signaling in the Pancreatic Tumor Microenvironment Promotes Fibrosis and Immune Evasion to Facilitate Tumorigenesis. Cancer Res 76:2525-39
Birtolo, Chiara; Go, Vay Liang W; Ptasznik, Andrzej et al. (2016) Phosphatidylinositol 3-Kinase: A Link Between Inflammation and Pancreatic Cancer. Pancreas 45:21-31
(2016) Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition). Autophagy 12:1-222
Moris, Maria; Dawson, David W; Jiang, Jennifer et al. (2016) Plectin-1 as a Biomarker of Malignant Progression in Intraductal Papillary Mucinous Neoplasms: A Multicenter Study. Pancreas 45:1353-8
Zhong, Zhenyu; Umemura, Atsushi; Sanchez-Lopez, Elsa et al. (2016) NF-κB Restricts Inflammasome Activation via Elimination of Damaged Mitochondria. Cell 164:896-910
Toste, Paul A; Nguyen, Andrew H; Kadera, Brian E et al. (2016) Chemotherapy-Induced Inflammatory Gene Signature and Protumorigenic Phenotype in Pancreatic CAFs via Stress-Associated MAPK. Mol Cancer Res 14:437-47
Setiawan, Veronica Wendy; Pandol, Stephen J; Porcel, Jacqueline et al. (2016) Dietary Factors Reduce Risk of Acute Pancreatitis in a Large Multiethnic Cohort. Clin Gastroenterol Hepatol :

Showing the most recent 10 out of 40 publications