Organophosphates pesticides (OP) are among the most widely applied pesticides worldwide and in Washington state. In adults, OPs are recognized to act as neurotoxicants through their ability to inhibit the enzyme, acetylcholinesterase (AChE). In the developing organism it is still unknown whether OP-induced developmental neurotoxicity is a consequence of AChE inhibition. Increased reports from child cohort studies suggest gestational exposures to pesticides are of public health concern. Current risk assessment and management strategies may not be optimal with the use of AChE inhibition as a regulatory anchor. This project will examine the relationship between AChE inhibition and neurotoxicity in depth, across pre- and postnatal developmental life stages. The overall hypothesis of our proposal is that pesticide exposure alters neurodevelopment and behavior in rodents by interfering with cellular pathways controlling proliferation, differentiation and apoptosis in the CNS during critical "windows of susceptibility" and that these mechanisms are independent of AChE inhibition. Using in vitro neurodevelopmental-stage specific models for both pre and postnatal developmental periods, we propose to assess the role of OP-induced oxidative stress and its consequential impact on these important cellular pathways, which underlie CNS development.
The specific aims are: (l)to investigate the direct effects of OPs on neurite outgrowth, neuronal proliferation and viability in neurodevelopment-stage specific in vitro models (human stem cells, mouse neuronal precursor cells, and rodent hippocampal neurons);(2)to elucidate the impacts of OP-induced oxidative stress and effects on neurogenesis;(3)to examine developmental stage specific OP impacts on proliferation and differentiation gene expression pathways;and(4) to investigate OP effects on glial-neuronal communication. These proposed experiments will provide significant new insight into the mechanisms of OP-induced neurotoxicity and the role of AChE inhibition during pre- and post-natal neurodevelopment. Working closely with the Biostatistics, Modeling and Risk Characterization Facility Core, results from these studies will be integrated and translated into developing biological and pathway based models relevant for risk assessment across developmental periods and across species.

Public Health Relevance

The overall focus of the Center for Child Environmental Health Risks Research is on mechanisms that definite children's susceptibility to pesticides. The Molecular Mechanisms Research Core will specifically evaluate the molecular and cellular mechanisms of toxicity through which organophosphate pesticides can exert their neurodevelopmental toxicity.

Agency
National Institute of Health (NIH)
Institute
National Institute of Environmental Health Sciences (NIEHS)
Type
Research Program Projects (P01)
Project #
5P01ES009601-15
Application #
8519443
Study Section
Special Emphasis Panel (ZES1-LKB-G)
Project Start
Project End
Budget Start
2013-08-01
Budget End
2014-07-31
Support Year
15
Fiscal Year
2013
Total Cost
$67,283
Indirect Cost
$16,739
Name
University of Washington
Department
Type
DUNS #
605799469
City
Seattle
State
WA
Country
United States
Zip Code
98195
Wegner, Susanna H; Yu, Xiaozhong; Pacheco Shubin, Sara et al. (2015) Stage-specific signaling pathways during murine testis development and spermatogenesis: A pathway-based analysis to quantify developmental dynamics. Reprod Toxicol 51:31-9
Thompson, Beti; Griffith, William C; Barr, Dana B et al. (2014) Variability in the take-home pathway: farmworkers and non-farmworkers and their children. J Expo Sci Environ Epidemiol 24:522-31
Hohl, Sarah D; Gonzalez, Claire; Carosso, Elizabeth et al. (2014) "I did it for us and I would do it again": perspectives of rural latinos on providing biospecimens for research. Am J Public Health 104:911-6
Pizzurro, Daniella M; Dao, Khoi; Costa, Lucio G (2014) Astrocytes protect against diazinon- and diazoxon-induced inhibition of neurite outgrowth by regulating neuronal glutathione. Toxicology 318:59-68
Smith, Marissa N; Griffith, William C; Beresford, Shirley A A et al. (2014) Using a biokinetic model to quantify and optimize cortisol measurements for acute and chronic environmental stress exposure during pregnancy. J Expo Sci Environ Epidemiol 24:510-6
Pizzurro, Daniella M; Dao, Khoi; Costa, Lucio G (2014) Diazinon and diazoxon impair the ability of astrocytes to foster neurite outgrowth in primary hippocampal neurons. Toxicol Appl Pharmacol 274:372-82
Armstrong, Jenna L; Dills, Russell L; Yu, Jianbo et al. (2014) A sensitive LC-MS/MS method for measurement of organophosphorus pesticides and their oxygen analogs in air sampling matrices. J Environ Sci Health B 49:102-8
Shepherd-Banigan, Megan; Ulrich, Angela; Thompson, Beti (2014) Macro-activity patterns of farmworker and non-farmworker children living in an agricultural community. Environ Res 132:176-81
Roqué, Pamela J; Guizzetti, Marina; Costa, Lucio G (2014) Synaptic structure quantification in cultured neurons. Curr Protoc Toxicol 60:12.22.1-12.22.32
Marsillach, Judit; Costa, Lucio G; Furlong, Clement E (2013) Protein adducts as biomarkers of exposure to organophosphorus compounds. Toxicology 307:46-54

Showing the most recent 10 out of 73 publications