Epigenetic mechanisms act at the interface of genetic and environmental risk factors in autism. Project 2 is designed to investigate to focus on the epigenetic mark of DNA niethylation, as environmental toxins have been demonstrated to reduce global DNA methylation levels while methyl-donor nutrients can be protective. This project will make use primarily of human cord blood samples from the MARBLES study in order to test the hypothesis that epigenetic patterns laid down in eariy life that regulate synapse maturation and immune responses will be impaired in autism through interactions between genetic and environmental factors.
The first aim i s designed to perform a genome-wide analysis of DNA methylation and copy number variation and to study the association of differences in genetics and epigenetics with environmental exposures (from Project 1 and Core C) and nutrients.
The second aim will investigate methylation of a specific gene locus, FOXP3, as an epigenetic marker of regulatory T cells and will make use of immunology expertise and existing participant samples from both MARBLES and CHARGE from Project 3.
The third aim will test a multifactorial mechanistic model of transcription-induced epigenetic memory of perinatal gene x environment interactions at two specific loci, F0XP3 and FMR1, through interactions with Projects 3 and 4. Together these studies will increase understanding of the epigenetic interface between genetic and environmental risk factors in autism, leading to improved diagnosis, prevention, and therapies.

Public Health Relevance

How early life exposures can shape the difference between a normal developmental trajectory and one that leads to autism spectrum disorders is the critical question addressed by this proposal. This project uses both genome-wide and gene focused mechanistic approaches on human samples from a prospective epidemiological study in order to improve understanding, prevention, and treatment of autism spectrum disorders.

Agency
National Institute of Health (NIH)
Institute
National Institute of Environmental Health Sciences (NIEHS)
Type
Research Program Projects (P01)
Project #
5P01ES011269-12
Application #
8667440
Study Section
Special Emphasis Panel (ZES1)
Project Start
Project End
Budget Start
2014-06-01
Budget End
2015-05-31
Support Year
12
Fiscal Year
2014
Total Cost
Indirect Cost
Name
University of California Davis
Department
Type
DUNS #
City
Davis
State
CA
Country
United States
Zip Code
95618
Vogel Ciernia, Annie; Pride, Michael C; Durbin-Johnson, Blythe et al. (2017) Early motor phenotype detection in a female mouse model of Rett syndrome is improved by cross-fostering. Hum Mol Genet 26:1839-1854
Sethi, S; Chen, X; Kass, P H et al. (2017) Polychlorinated biphenyl and polybrominated diphenyl ether profiles in serum from cattle, sheep, and goats across California. Chemosphere 181:63-73
Dunaway, Keith; Goorha, Sarita; Matelski, Lauren et al. (2017) Dental Pulp Stem Cells Model Early Life and Imprinted DNA Methylation Patterns. Stem Cells 35:981-988
Aschner, Michael; Ceccatelli, Sandra; Daneshian, Mardas et al. (2017) Reference compounds for alternative test methods to indicate developmental neurotoxicity (DNT) potential of chemicals: example lists and criteria for their selection and use. ALTEX 34:49-74
Krakowiak, Paula; Goines, Paula E; Tancredi, Daniel J et al. (2017) Neonatal Cytokine Profiles Associated With Autism Spectrum Disorder. Biol Psychiatry 81:442-451
Meltzer, Amory; Van de Water, Judy (2017) The Role of the Immune System in Autism Spectrum Disorder. Neuropsychopharmacology 42:284-298
Sethi, Sunjay; Keil, Kimberly P; Chen, Hao et al. (2017) Detection of 3,3'-Dichlorobiphenyl in Human Maternal Plasma and Its Effects on Axonal and Dendritic Growth in Primary Rat Neurons. Toxicol Sci 158:401-411
Bal-Price, Anna; Lein, Pamela J; Keil, Kimberly P et al. (2017) Developing and applying the adverse outcome pathway concept for understanding and predicting neurotoxicity. Neurotoxicology 59:240-255
Holland, Erika B; Feng, Wei; Zheng, Jing et al. (2017) An Extended Structure-Activity Relationship of Nondioxin-Like PCBs Evaluates and Supports Modeling Predictions and Identifies Picomolar Potency of PCB 202 Towards Ryanodine Receptors. Toxicol Sci 155:170-181
Edmiston, Elizabeth; Ashwood, Paul; Van de Water, Judy (2017) Autoimmunity, Autoantibodies, and Autism Spectrum Disorder. Biol Psychiatry 81:383-390

Showing the most recent 10 out of 301 publications