The bioaccumulation of halogenated organic compounds (HOCs) in the marine food web provides a direct route for human exposure to several classes of persistent organic pollutants. Natural polybrominated organic compounds such as polybrominated diphenyl ethers, polybrominated dibenzodioxins and polybrominated bipyrroles are collectively proposed to be synthesized by marine organisms such as cyanobacteria and red algae involving unknown metabolic pathways harboring yet to be discovered halogenating enzymes. The goals of this project are to provide a genetic and biochemical foundation for the microbial biosynthesis of HOCs in the marine environment. Our research strategy includes a comprehensive genetic, biochemical, and enzyme structure-based analysis of polybrominated metabolite biosynthesis in two model marine bacterial groups, Pseudoalteromonas and Streptomyces, as well as other HOC producing strains discovered in the course of the research. We will provide a direct interrogation of natural maririe samples enriched in HOCs to identify and characterize the prevalence of these biosynthetic pathways in the marine environment. The proposed work will be undertaken jointly by the laboratories of Allen and Moore at Scripps who have a proven track record of collaboration and joint student mentorship. The success of this Project is based on biochemists, microbiologists, structural biologists and genome scientists working together;thus we have enlisted the help of Moore's long-standing collaborator Prof. Joseph Noel (Salk Institute for Biological Studies, La Jolla) to join the Project through a sub-contract to assist in the protein crystallography of brominating enzymes in order to provide a detailed understanding of the structural basis behind enzymatic bromination. Collectively, this project will deliver new molecular-based insight into organohalogen biosynthesis that will be united with other Center investigations to explore the diversity and ecology of these compounds and their impacts on oceans and human health. 1

Agency
National Institute of Health (NIH)
Institute
National Institute of Environmental Health Sciences (NIEHS)
Type
Research Program Projects (P01)
Project #
1P01ES021921-01
Application #
8412956
Study Section
Special Emphasis Panel (ZES1-LKB-J (P1))
Project Start
Project End
Budget Start
2012-09-24
Budget End
2013-07-31
Support Year
1
Fiscal Year
2012
Total Cost
$122,572
Indirect Cost
$41,224
Name
University of California San Diego
Department
Type
DUNS #
804355790
City
La Jolla
State
CA
Country
United States
Zip Code
92093
Agarwal, Vinayak; Miles, Zachary D; Winter, Jaclyn M et al. (2017) Enzymatic Halogenation and Dehalogenation Reactions: Pervasive and Mechanistically Diverse. Chem Rev 117:5619-5674
Arakawa, Neal; Aluwihare, Lihini I; Simpson, Andre J et al. (2017) Carotenoids are the likely precursor of a significant fraction of marine dissolved organic matter. Sci Adv 3:e1602976
Agarwal, Vinayak; Blanton, Jessica M; Podell, Sheila et al. (2017) Metagenomic discovery of polybrominated diphenyl ether biosynthesis by marine sponges. Nat Chem Biol 13:537-543
Hong, Mee Young; Hoh, Eunha; Kang, Brian et al. (2017) Fish Oil Contaminated with Persistent Organic Pollutants Induces Colonic Aberrant Crypt Foci Formation and Reduces Antioxidant Enzyme Gene Expression in Rats. J Nutr 147:1524-1530
El Gamal, Abrahim; Agarwal, Vinayak; Diethelm, Stefan et al. (2016) Biosynthesis of coral settlement cue tetrabromopyrrole in marine bacteria by a uniquely adapted brominase-thioesterase enzyme pair. Proc Natl Acad Sci U S A 113:3797-802
Teufel, Robin; Agarwal, Vinayak; Moore, Bradley S (2016) Unusual flavoenzyme catalysis in marine bacteria. Curr Opin Chem Biol 31:31-9
Harvey, Elizabeth L; Deering, Robert W; Rowley, David C et al. (2016) A Bacterial Quorum-Sensing Precursor Induces Mortality in the Marine Coccolithophore, Emiliania huxleyi. Front Microbiol 7:59
El Gamal, Abrahim; Agarwal, Vinayak; Rahman, Imran et al. (2016) Enzymatic Reductive Dehalogenation Controls the Biosynthesis of Marine Bacterial Pyrroles. J Am Chem Soc 138:13167-13170
Hong, Mee Young; Lumibao, Jan; Mistry, Prashila et al. (2015) Fish Oil Contaminated with Persistent Organic Pollutants Reduces Antioxidant Capacity and Induces Oxidative Stress without Affecting Its Capacity to Lower Lipid Concentrations and Systemic Inflammation in Rats. J Nutr 145:939-44
Agarwal, Vinayak; Li, Jie; Rahman, Imran et al. (2015) Complexity of naturally produced polybrominated diphenyl ethers revealed via mass spectrometry. Environ Sci Technol 49:1339-46

Showing the most recent 10 out of 16 publications